I believe the change of state shown in the model is deposition.
Deposition is a process in which gases change phase and turns directly in solids without passing through the liquid phase. It is the opposite of sublimation.
One of the major difference between gases and solids is the distance between molecules; in gases the inter molecular spaces are large, while in solid they are very small, making solids be the most dense, with closely packed molecules. This is evident in the diagram, the phase changed from gases to solids.
C because it has to do with opposite motions and stuff
295k=22°c
1050k=777°
total heat needed=
(0.475)(777-22)(specific heat capacity of aluminium)+(0.475)(specific latent heat of aluminium)
Answer:
a. 3-methylbutan-2-ol
b. 2-methylcyclohexan-1-ol
Explanation:
For this reaction, we must remember that the hydroboration is an <u>"anti-Markovnikov" reaction</u>. This means that the "OH" will be added at the <em>least substituted carbon of the double bond.</em>
In the case of <u>2-methyl-2-butene</u>, the double bond is between carbons 2 and 3. Carbon 2 has two bonds with two methyls and carbon 3 is attached to 1 carbon. Therefore <u>the "OH" will be added to carbon three</u> producing <u>3-methylbutan-2-ol</u>.
For 1-methylcyclohexene, the double bond is between carbons 1 and 2. Carbon 1 is attached to two carbons (carbons 6 and 7) and carbon 2 is attached to one carbon (carbon 3). Therefore<u> the "OH" will be added to carbon 2</u> producing <u>2-methylcyclohexan-1-ol</u>.
See figure 1
I hope it helps!
If we fertilize a plant, then its height increases fast. Always use if then format