Answer:
C. All electron carriers are mobile and hydrophobic
Explanation:
Hello,
In this case, it is widely known that the electron carriers move inside the inner mitochondrial membrane and consequently move electrons from one to another. In such a way, they are mobile, therefore they are largely hydrophobic as long as they are inside the membrane.
For instance, the cytochrome c is a water-soluble protein in a large range, therefore, the answer is: C. All electron carriers are mobile and hydrophobic.
Best regards.
Answer: Using more fossil fuels
Explanation: Burning fossil fuels releases Green House gasses into the atmosphere, such as carbon dioxide. The carbon dioxide in the atmosphere traps in heat, which causes global temperatures to increase.
Answer:
The relation between the shielding and effective nuclear charge is given as

where s denote shielding
z_{eff} denote effective nuclear charge
Z - atomic number
Explanation:
shielding is referred to as the repulsion of an outermost electron to the pull of electron from valence shell. Higher the electron in valence shell higher will be the shielding effects.
Effective nuclear charge is the amount of net positive charge that valence electron has.
The relation between the shielding and the effective nuclear charge is given as
wheres denote shielding
z_{eff} denote effective nuclear charge
Z - atomic number
Answer:. In the case of neon, it is electrical energy that pulls the electrons off.
explanation-Plasma can be made from a gas if a lot of energy is pushed into the gas. In the case of neon, it is electrical energy that pulls the electrons off. When it is time to become a gas again, just flip the neon light switch off. Without the electricity to energize the atoms, the neon plasma returns to its gaseous state.