Answer:
b.) All these technologies use radio waves, including high-frequency microwaves
d.) Microwave ovens emit in the same frequency band as some wireless Internet devices.
e.) The radiation emitted by wireless Internet devices has the shortest wavelength of all the technologies listed above.
f.) All these technologies emit waves with a wavelength in the range of 0.10 to 10.0 m.
Explanation:
For option D. The frequency range of microwave ovens is 2450 MHz = 2.4 GHz, which intersects with wireless internet technology with range of 2.4 to 2.6 GHz.
For E, wavelenght and frequency are inversely proportional. Wireless internet service has the greatest frequency band and hence the shortest wavelenght band.
For F, in all these radiations, the highest Freq is 2.6 GHz and the lowest is 40 MHz. Wavelenght is speed of light (3x10^8 m/s) divided by the frequency.
2.6 GHz = 2.6x10^9 Hz
Wavelenght = 3x10^8 ÷ 2.6x10^9 = 0.1 m
40 MHz = 40x10^6
Wavelenght = 3x10^8 ÷ 40x10^6 = 7.5 m
A poll watcher
<span>a person who is paid by the parties to watch the voters and officials to make sure everything is fair</span>
Answer:
the number of grains in the ball is 274,848
Explanation:
Given that;
diameter = 0.5 mm
so radius r = 0.25 mm
first we determine the volume of the ball using the following equation;
V = 4/3×πr³
we substitute
V = 4/3×π(0.25)³
V = 0.06544 mm³
Now form table 1.1 "Grain sizes" a metal with grain size number of 12 has about 4,200,000 grains/mm³
so;
Number of grains N = 0.06544 × 4,200,000
N = 274,848 grains
Therefore, the number of grains in the ball is 274,848
Answer:
Force, F = 77 N
Explanation:
A child in a wagon seem to fall backward when you give the wagon a sharp pull forward. It is due to Newton's third law of motion. The forward pull on wagon is called action force and the backward force is called reaction force. These two forces are equal in magnitude but they acts in opposite direction.
We need to calculate the force is needed to accelerate a sled. It can be calculated using the formula as :
F = m × a
Where
m = mass = 55 kg
a = acceleration = 1.4 m/s²
![F=55\ kg\times 1.4\ m/s^2](https://tex.z-dn.net/?f=F%3D55%5C%20kg%5Ctimes%201.4%5C%20m%2Fs%5E2)
F = 77 N
So, the force needed to accelerate a sled is 77 N. Hence, this is the required solution.