Answer:

Explanation:
Using kinematics equations:

Use
due to condition of distance traveled.
Solving second equation for time, there are two solutions. t=0 and

Use the expression in the first equation to have

Using trigonometric identities, you have the answer of the distance.
By doing the ratio for two different angles, you have the second answer. Due to sine function properties, the distances can be the same to complementary angles. Example, for 20° and 70°, the distance is the same.
<em></em>
Answer:
<u><em>The aufbau principle</em></u>
<u />
<u><em>The Pauli exclusion principle</em></u>
<u><em></em></u>
<u><em>Hund's rule of maximum multiplicity</em></u>
Explanation:
<u><em>The aufbau principle:</em></u>
<em></em>
The fundamental electronic configuration is achieved by placing the electrons one by one in the different orbitals available for the atom, which are arranged in increasing order of energy.
<u><em>The Pauli exclusion principle:</em></u>
<em></em>
Two electrons of the same atom cannot have their four equal quantum numbers. Because each orbital is defined by the quantum numbers n, l, and m, there are only two possibilities ms = -1/2 and ms = +1/2, which physically reflects that each orbital can contain a maximum of two electrons, having opposite spins
<u><em>Hund's rule of maximum multiplicity:</em></u>
This rule says that when there are several electrons occupying degenerate orbitals, of equal energy, they will do so in different orbitals and with parallel spins, whenever this is possible. Because electrons repel each other, the minimum energy configuration is one that has electrons as far away as possible from each other, and that is why they are distributed separately before two electrons occupy the same orbital.
Answer:
As the "plates" on each side of ridges in the seafloor are pulled away, lava comes up from the middle, hardens and "records" the current magnetic field.
Explanation:
Answer
given,
given,
small cube side = 10 cm
larger cube side = 12 cm
density of steel = 7 g/cm³
density of aluminium = 2.7 g/cm³
density of the water (ρ₁)= 1 g/cm³
Cube A and B made of steel
buoyant force of Cube A
B₁ = ρ₁ V g = 1 x 10 x 10 x 10 x g= 1000 g
for cube B
B₂ = ρ₁ V g = 1 x 12 x 12 x 12 x g= 1728 g
buoyant force of Cube C
B₃ = ρ₁ V g = 1 x 10 x 10 x 10 x g= 1000 g
for cube D
B₄ = ρ₁ V g = 1 x 12 x 12 x 12 x g= 1728 g
buoyant force acting on the cube depends on the density of the fluid
hence,
B₂ = B₄ > B₁ = B₃