The distance at which the man slips is 0.3 m
Newton's Second Law, F = ma, is used to calculate the braking distance. By dividing the mass of the car by the gravitational acceleration, one may determine its weight. The weight of the car multiplied by the coefficient of friction equals the brake force.
Given-
mass of man= 70 kg
frictional coefficient μ=0.02
mass of body thrown= m2 = 3kg
let s be the stopping distance
we know that frictional force = F= μN
=μMg= 0.02 x 70 x 10
=14 N
∴acceleration, a= 14/70 = 0.2 m/s²
now on applying conservation of linear momentum
pi=pf pi=0 (initially at rest)
0=m1v1-m2v2 (v1= velocity of man) (v2=velocity of body= 8m/s
v1= m2v2 /m1= 0.3 m/s
we know,
v²- u² = -2as
0- (0.3) ²= -2 x 0.2 x 5
s= 0.09/0.4 ≈ 0.3 m
Learn more about distance here-
brainly.com/question/15172156
#SPJ4
Answer:
No you could not do that because if you tried even if you where to go super fast they would feel a breif second of pain before being completely riped from there body
Answer:
4.37 * 10^-4 J
Explanation:
Energy stored :
mgΔl / 2
m = mass = 10kg ; g = 9.8m/s² ; r = cross sectional Radius = 1cm = 1 * 10-2 m
Δl = mgl / πr²Y
Y = Youngs modulus = Y=3.5 ×10^10 ; l = Length = 1m
Δl = (10 * 9.8 * 1) / π * (1 * 10^-2)²* 3.5 ×10^10
Δl = 98 / 3.5 * π * 10^6
Δl = 0.00000891267
Energy stored :
mgΔl / 2
(10 * 9.8 * 0.00000891267) / 2
= 0.00043672083 J
4.37 * 10^-4 J
Answer:
- 7.088 m/s²
Explanation:
As we know that,
★ Acceleration = Change in velocity/Time
→ a = (v - u)/t
Here,
- Initial velocity (u) = 27.7 m/s
- Final velocity (v) = 10.9 m/s
→ a = (10.9 m/s - 27.7 m/s)/2.37 s
→ a = -16.8/2.37 m/s²
→ <u>a</u><u> </u><u>=</u><u> </u><u>-</u><u>7</u><u>.</u><u>0</u><u>8</u><u>8</u><u> </u><u>m/s²</u> [Answer]
Negative sign denotes that the velocity is decreasing.
Well, Air resistance is a special type of friction (you cannot classify it in other categories). That force of air-resistance is often observed to oppose the motion of the object,( like every other frictional forces)
Hope this helps!