I have absolutely no clue
<h3>Answer;</h3>
<em><u>Sand Spit or Spit </u></em>
<h3><u>Explanation;</u></h3>
- <em><u>Long shore drift is the process that occurs when a sheet of water moves on and off the beach, in other words the swash and back swash</u></em>, thus capturing and transporting sediment on the beach back out to the sea.
- <em><u>Sandbar</u></em> is normally formed when the sandspit stretches across a bay and connects the two sides. <em><u>Headland</u></em> is a high piece of land that extends out onto the sea. <em><u>Sea stacks </u></em>on the other hand results from the collapsing of the roof of the arch.
Answer:
3.6ft
Explanation:
Using= 2*π*sqrt(L/32)
To solve for L, first move 2*n over:
T/(2*π) = sqrt(L/32)
Next,eliminate the square root by squaring both sides
(T/(2*π))2 = L/32
or
T2/(4π2) = L/32
Lastly, multiply both sides by 32 to yield:
32T2/(4π2) = L
and simplify:
8T²/π²= L
Hence, L(T) = 8T²/π²
But T = 2.1
Pi= 3.14
8(2.1)²/3.14²
35.28/9.85
= 3.6feet
Answer:
The work is -67.76 J
Explanation:
The law of conservation of energy is considered one of one of the fundamental laws of physics and states that the total energy of an isolated system remains constant. except when it is transformed into other types of energy.
This is summed up in the principle that energy can neither be created nor destroyed in the universe, only transformed into other forms of energy.
In this case you must calculate the loss of kinetic energy. This loss is actually the work done against the resistive force in the air. Friction is the only force other than gravity that acts on the ball.
So, the loss of kinetic energy is 
You know:
- mass=m=0.22 kg
- Initial velocity of the ball:

Final velocity of the ball: 
Replacing:
= -67.76 J
Friction work is always negative because friction is always against displacement.
<u><em>The work is -67.76 J</em></u>
Answer:

Explanation:
We can use Newton's Universal Law of Gravitation to solve this problem:
., where
is acceleration due to gravity at the planet's surface,
is gravitational constant
,
is the mass of the planet, and
is the radius of the planet.
Since acceleration due to gravity is given as
, our radius should be meters. Therefore, convert
kilometers to meters:
.
Now plugging in our values, we get:
,
Solving for
:
.