Answer:
Boyle's Law

Explanation:
Given that:
<u><em>initially:</em></u>
pressure of gas, 
volume of gas, 
<em><u>finally:</u></em>
pressure of gas, 
volume of gas, 
<u>To solve for final volume</u>
<em>According to Avogadro’s law the volume of an ideal gas is directly proportional to the no. of moles of the gas under a constant temperature and pressure.</em>
<em>According to the Charles' law, at constant pressure the volume of a given mass of an ideal gas is directly proportional to its temperature.</em>
But here we have a change in the pressure of the Gas so we cannot apply Avogadro’s law and Charles' law.
Here nothing is said about the temperature, so we consider the Boyle's Law which states that <em>at constant temperature the volume of a given mass of an ideal gas is inversely proportional to its pressure.</em>
Mathematically:



Given the temperature, we can tell if the substance is cold or not relative to the reference temperature. For example, compared to the substance having a temperature of 15 degrees C, the substance is colder and it is hotter from the substance of temperature lesser than 12 degrees C.
Option (ii) B is the correct option. The object on the moon has greater mass.
To resolve this, utilize the formulas Force = Mass * Acceleration.
The equation can be used to find the mass given the force in Newtons, using 9.8 m/s² for the acceleration of gravity of the earth and 1.6 m/s² for the moon.
Calculating the mass on earth:
30 N = 9.8 m/s² * mass
This results in a mass of 3.0 kg for the object on Earth.
Calculating the mass of the moon:
30 N = 1.6 m/s²2 * mass
Thus, the moon's object has a mass of 19. kg.
This can be explained by the fact that the earth has a stronger gravitational pull than the moon, producing more force per kilogram of mass. As a result, the moon's mass must be bigger to produce the same amount of force at a lower acceleration from gravity (1.6 m/s² vs. 9.8 m/s²).
To know more about Mass, refer to this link :
brainly.com/question/13386792
#SPJ9
A rocket ship is accelerated by the SRB and the main engines for 2.0 minutes and the main engines for 8.5 minutes after the launch. The acceleration of the ship during the first 2.0 minutes is 11 m/s² (D).
A rocket ship has several engines and thrusters. We can divide its initial movement into 2 parts:
- From t = 0 min to t = 2.0 min, the SRB and the main engines act together and the speed goes from 0 m/s (rest) to 1341 m/s.
- From t = 2.0 min to t = 8.5 min, the main engines alone accelerate the ship form 1341 m/s to 7600 m/s.
We want to know the acceleration in the first part (first 2.0 minutes). We need to consider that:
- The speed increases from 0 m/s to 1341 m/s.
- The time elpased is 2.0 min.
- 1 min = 60 s.
The acceleration of the ship during the first 2.0 minutes is:

A rocket ship is accelerated by the SRB and the main engines for 2.0 minutes and the main engines for 8.5 minutes after the launch. The acceleration of the ship during the first 2.0 minutes is 11 m/s² (D).
Learn more: brainly.com/question/16274121
Answer:
49 N
Explanation:
In order to move the box at constant speed, the acceleration of the box must be zero (a=0): this means, according to Newton's second law,
F = ma
that the net force acting on the box, F, must be zero as well.
Here there are two forces acting on the box in the horizontal direction while it is moving:
- The force of push applied by the guy, F
- The frictional force, 
For an object moving on a flat surface, the frictional force is given by

where
is the coefficient of friction
m is the mass of the box
g is the acceleration of gravity
So the equation of the forces becomes

And substituting:

We find the force that must be applied by the guy:
