The pressure of blood exerted on the inner walls of the veins
Answer:
The mass of the sand that will fall on the disk to decrease the is 0.3375 kg
Explanation:
Moment before = Moment after

where;
I is moment of inertia = Mr² = 0.3 x (0.3)² = 0.027 kg.m²
substitute this in the above equation;
![m = \frac{ 0.027[3(2 \pi) - 2(2 \pi)]} {0.2^2 * 6\pi } = \frac{ 0.027[6 \pi - 4\pi]} {0.2^2 * 4\pi }\\\\m = 0.3375kg](https://tex.z-dn.net/?f=m%20%3D%20%5Cfrac%7B%200.027%5B3%282%20%5Cpi%29%20%20-%202%282%20%5Cpi%29%5D%7D%20%7B0.2%5E2%20%2A%206%5Cpi%20%7D%20%3D%20%5Cfrac%7B%200.027%5B6%20%5Cpi%20%20-%204%5Cpi%5D%7D%20%7B0.2%5E2%20%2A%204%5Cpi%20%7D%5C%5C%5C%5Cm%20%3D%200.3375kg)
Therefore, the mass of the sand that will fall on the disk to decrease the is 0.3375 kg
Answer:a) P = Po + rho×h×g
b) P = 5.4 × 10^9 pa
c) F = P/A = (Po + rho×h×g)/A
d) 1.174×10^11N
Explanation: Using the formula
P = Po + rho×h×g
P = 1.0 x 10^5 + 1000 × 5.5 × 9.81
P = 5.4 × 10^9pa
The magnitude of the force exerted by water on the top of the person's head F at the depth h in terms of P
F = P/A = (Po + rho×h×g)/A
Using the above formula
Where A = 0.046m^2
F = P/ A = 5.4×10^9/0.046
F = 1.174×10^11N
Answer:
Yes
Explanation:
It is possible for sedimentary rocks to be converted to igneous rocks. Under conditions of high temperature and pressure, sedimentary rocks can be broken down into igneous rock by melting this rock type.
When the rock is broken down, it forms melt which when cooled and solidifies will form igneous rocks.
Sedimentary rocks are formed from the breaking down of pre-existing rocks through the action of weathering, erosion and sediment transportation. Within a basin, the sediments are compacted and lithified.
When this is subjected to intense pressure and temperature, the rock hardens and might further break down to melt.