Answer:
The vertical distance that the ski jumper fell is 417.45 m.
Explanation:
Given;
initial horizontal velocity of the jumper,
= 26 m/s
horizontal distance of the jumper, dx = 240 m
The time of the motion is given by;
dx = Vₓt
t = dx / Vₓ
t = 240 / 26
t = 9.23 s
The vertical distance traveled by the diver is given by;

initial vertical velocity,
, = 0

Therefore, the vertical distance that the ski jumper fell is 417.45 m.
Answer: 500 joules
Explanation:
Given that
Mass of ball = 10kg
kinetic energy = ?
velocity of the ball = 10m/s
Kinetic energy is the energy possessed by a moving object. It is measured in joules, and depends on the mass (m) of the object and the velocity (v) by which it moves
i.e K.E = 1/2mv²
K.E = 1/2 x 10kg x (10m/s)²
K.E = 0.5 x 10kg x (10m/s)²
K.E = 5 x 100
K.E = 500 joules
Thus, the kinetic energy of the ball is 500 joules
In this problem we have the electric field intensity E:
E = 6.5 ×
newtons/coulomb
We have the magnitude of the load:
q = 6.4 ×
coulombs
We also have the distance d that the load moved in a direction parallel to the field 1.2 ×
meters.
We know that the electric potential energy (PE) is:
PE = qEd
So:
PE = (6.4 ×
)(6.5 ×
)(1.2 ×
)
PE = 5.0 x
joules
None of the options shown is correct.
Answer:
Explanation:
When objects collide, energy can be transferred from one object to another, thereby changing their motion. In such collisions, some energy is typically also transferred to the surrounding air; as a result, the air gets heated and sound is produced.