Pic of Bohr Model attached
Answer:
0.57 m
Explanation:
First of all, we need to calculate the time it takes for the ball to cover the horizontal distance between the starting position and the crossbar. This can be done by analzying the horizontal motion only. In fact, the horizontal velocity is constant and it is

And the distance to cover is
d = 19 m
So the time taken is

Now we want to find how high the ball is at that time. The initial vertical velocity is

So the vertical position of the ball at time t is

where g = 9.8 m/s^2 is the acceleration of gravity. Substituting t = 2.04 s, we find

The crossbar height is 3.05 m, so the difference is

So the ball passes 0.57 m above the crossbar.
Answer:
Most of the frogs have webbed feet which helps them swim. The thin skin between the toes helps them to push through the water. The frog's feet is webbed ,So they can easily swim.. The skin between toes are flexible soo they can freely push and pull it
Explanation:
The horse's position on the ground at time <em>t</em> is
<em>x</em> = (20 m/s) <em>t</em>
The baboon's height from the ground at time <em>t</em> is
<em>y</em> = 3 m - 1/2 <em>g</em> <em>t</em>²
where <em>g</em> = 9.80 m/s² is the magnitude of the acceleration due to gravity.
The baboon falls and lands on the horse, so that the two animals meet when the baboon's height is 2 m from the ground, which happens after
2 m = 3 m - 1/2 <em>g</em> <em>t</em>²
1/2 <em>g</em> <em>t</em>² = 1 m
<em>t</em>² = (2 m) / (9.80 m/s²)
<em>t</em> ≈ 0.452 s
In this time, the horse reaches the tree, so its distance from it is
(20 m/s) * (0.452 s) ≈ 9.04 m