solution:
1000 = m*2400*(78-22) + m*8.79*10^5
1000= 134400m + 879000m
1000= 1030200m
m = 1000/1013400
m= 1013.4 grams
the final answer is 0.9706 grams
c) the salt solubility decreases with temperature.
Salts usually dissolve in water at a given temperature. When water cannot dissolve anymore salt at that same temperature, it is known as a saturation point. With most substances the solubility increases with increase in temperature. Same is the case for a salt like potassium nitrate. With increase in temperature the ability of it to dissolve in water increases. And so with decrease in temperature, the solubility decreases.
Answer:
0.52 mol
Explanation:
Using the general gas equation formula:
PV = nRT
Where;
P = pressure (atm)
V = volume (Liters)
n = number of moles (mol)
R = gas law constant (0.0821 Latm/molK)
T = temperature (K)
At STP (standard temperature and pressure), temperature of a gas is 273K, while its pressure is 1 atm
Using PV = nRT
n = PV/RT
n = (1 × 11.74) ÷ (0.0821 × 273)
n = 11.74 ÷ 22.41
n = 0.52 mol
There are 0.52 moles in the basketball
We are given with the initial volume of the substance and the molarity. The first thing that needs to be done is to multiply the equation in order to obtain the number of moles such as shown below.
number of moles = (40 mL) x (1 L / 1000 mL) x (0.3433 moles / L)
number of moles = 0.013732 moles
To get the value of the molarity of the diluted solution, we divide the number of moles by the total volume.
molarity = (0.013732 moles) / (750 mL / 1000 mL/L) = 0.0183 M
Similarly, we can solve for the molarity by using the equation,
M₁V₁ = M₂V₂
Substituting the known values in the equation,
(0.3433 M)(40 mL) = M₂(750 mL)
M₂ = 0.0183 M
Ph= -log[h30]
Ph= -log[1.7x10^-4]
pH= 3.77
pH is acidic