Answer:
Option a: positron emission.
Explanation:
In the transformation we have:
⁶⁷Ga → ⁶⁷Zn
The reaction is:

For Ga to become Zn, the atom nucleus has to lose a proton, so in the given options, the reaction that involves the transformation of a proton is the option a, positron emission.
In a positron emission, a proton becomes into a neutron and a positron:

Therefore, the correct answer is option a: positron emission.
I hope it helps you!
1. This can be due to the dissolving of the solid in liquid and form a solution.
Dissolving is a physical property because dissolving doesn't form new substances and the chemical composition of the solid is not changed.
The color building up over the time can be due to the rate of dissolving of the solid and amount of particles have been dissolved.
Example:
- Dissolving of CuSO₄ solid in water.
- This develops a blue color.
2. This can be due to the chemical reaction between the solid and liquid.
Chemical reaction is a chemical property because from reacting substances new substances can be formed which the chemical formula is different from initial substances.
The color building up over the time can be due to the rate of the reaction and the amount of reactants.
Example:
- The reaction between calcium metal with water.
- The color of Ca(OH)₂ is white color.
- Reaction is
Ca(s) + 2H₂O(l) → Ca(OH)₂(aq) + H₂(g)
Answer:
50 kg
Explanation:
Data:
Mass of bicycle = 10 kg
F = 168 N
a = 2.8 m/s²
Calculation:
F = ma Divide each side by m, Then
m = F/a
= 168/2.8
= 60 kg
m = mass of bicycle + Naoki's mass. Then
60 = 10 + Naoki's mass Subtract 10 from each side
Naoki's mass = 50 kg
The scientific notation for 5,098.000 is 5.098000*10^(3).
Here the number also has 7 significant figures.
Hope this helps~
Answer:
A. The rate of heat transfer through the material would increase.
Explanation:
To calculate the heat transfer in a heat exchanger you decide that there is not heat leakage to the surroundings, that means that magnitude of the two transfer rates will be equal. Any heat lost by the hot fluid, is gained by the cold fluid. The equation that describes this is Q = m×Cp×dT
Where:
heat = mass flow ×specific heat capacity × temperature difference
So if we increase the rate of flow of cooling water and the other variables that ypu can control remain the same, the result is that the rate of heat transfer through the material would increase, as it is stated in option a.