<span>Well, during the day, the water, as well as the surfaces surrounding the water, are heated by various thermodynamic processes: conduction, convection, radiation, etc. This in turn warms the water molecules in the lakes, streams, rivers, and oceans, thereby transferring heat (their kinetic energy) to the water molecules, which in turn receive that energy from the surrounding surfaces, or directly via radiation/insolation from the sun. When the water molecules attain enough energy, some of them attain enough energy to escape the surface of the liquid and enter the gas phase. Hence, as water is heated, more and more water molecules attain enough kinetic energy to enter the gas phase.</span>
First off, you must realize that the phase changes are marked by the points B and D on the graph. They are level because all of the energy (or heat) being added is being consumed by the physical process. So The temperature is increasing before the phase change, and after the phase change. The moments before and after are represented by points A, C, and E.
In the first shell there is 2 electrons and on the second shell there is 4 elections.
Compounds with different boiling points - b.
Only because<span> fractional distillationworks by having a temperature gradient in the column therefore different length hydrocarbons condence at different rays of different temperatures.This works because longer chain hydrocarbons have higher boiling points. </span>