The answer is c.
Elements on the left side of the table are metals, such as sodium, lithium, potassium, etc.
Elements on the right side are non metals, such as Chlorine, Fluorine, Bromine, etc.
Answer:
- <em>(B.) The pH of a buffer solution is determined by the ratio of the concentration of conjugate base to the concentration of strong acid.</em>
- <em>(C.) A buffer is generally made up of a weak acid and its conjugate base. </em>
- <em>(D.) The pH of a buffer solution does not change significantly when any amount of a strong acid is added.</em>
Explanation:
A buffer is solution which resists change in pH upon addition of either acids or bases.
The pH of a buffer is calculated by the ratio of the concentration of base to concentration of acid. The weak acid and conjugate base have a Ka similar to the pH desired.
2 boxes of A
Because C = A + B
2 of A = 20 grams
at the other hand we have 2 of B = 10
So 20 + 10 = 30 grams
Answer:
Option B. The reaction will shift to the left in the direction of the reactants.
Explanation:
The equation for the reaction is given below:
CO₂ + 2H₂O <=> CH₄ + O₂
Enthalpy change (ΔH) = +890 KJ
The reaction illustrated by the equation is endothermic reaction since the enthalpy change (ΔH) is positive.
Increasing the temperature of an endothermic reaction will shift the equilibrium position to the right and decrease the temperature will shift the equilibrium position to the left.
Therefore, decreasing the temperature of the system illustrated by the equation above, will shift the reaction to the left in the direction of the reactants.
Thus, option B gives the right answer to the question.
B
The emission spectrum of an element is identical to its absorption spectrum.
Explanation:
This is because a quantum leap of an electron of an atom from one lower energy level to a higher one results in the absorption of a specific wavelength of electromagnetic radiation. When the electron leaps back to the lower energy level, it releases the same wavelength of electromagnetic radiation. This is according to Bohr's theory. Every atom has a signature absorption and emission spectra that are used to identify it.
Learn More:
For more on Bohr theory of the atom check out;
brainly.com/question/5839092
brainly.com/question/12479859
brainly.com/question/1528920
#LearnWithBrainly