<span>A. Salt lowers the freezing point of water, which makes the melted snow on the road less likely to form ice.</span>
Answer:
1-butanol has higher boiling point mainly due to presence of hydrogen bonding.
Explanation:
Diethyl ether is a polar aprotic molecule due to presence of polar C-O-C moiety. Hence only dipole-dipole intermolecular force exist between diethyl ether molecules.
1-butanol is a polar protic molecule due to presence of C-OH moiety. Therefore dipole-dipole force along with hydrogen bonding exist between 1-butanol molecules.
So, intermolecular force is higher in 1-butanol as compared to diethyl ether. Hence more temperature is required to break intermolecular forces of 1-butanol to boil as compared to diethyl ether.
So, 1-butanol has higher boiling point mainly due to presence of hydrogen bonding.
Answer:
15.3 %
Explanation:
Step 1: Given data
- Mass of the sample (ms): 230 g
- Mass of carbon (mC); 136.6 g
- Mass of hydrogen (mH): 26.4 g
- Mass of nitrogen (mN): 31.8 g
Step 2: Calculate the mass of oxygen (mO)
The mass of the sample is equal to the sum of the masses of all the elements.
ms = mC + mH + mN + mO
mO = ms - mC - mH - mN
mO = 230 g - 136.6 g - 26.4 g - 31.8 g
mO = 35.2 g
Step 3: Calculate the mass percent of oxygen
%O = (mO / ms) × 100% = (35.2 g / 230 g) × 100% = 15.3 %
Study your experiment setup.<span> In 30 minutes, how will the air temperature in the bottles compare?</span><span> What do you predict will happen to the ice in each bottle?</span>
Answer:
16.0 g; 3.1 mol
Explanation:
(a) Mass of O atoms
Mass = 6.022 × 10^23 atoms × (2.66 × 10^-23 g/1 atom) = 16.0 g
(b) Moles of O atoms
0.050 kg = 50 g
Moles = 50 g × (1 mol/16.0 g) = 3.1 mol