Answer: Please see below for answers
Explanation: Matching appropriate labels , we have
1)3/4 of the way to second equivalence point of a diprotic acid/strong base titration-- pH=pka₂
equivalence point of a weak base/strong acid titration=pH<7
equivalence point of a strong acid/strong base titration= pH=7
equivalence point of a weak acid/strong base titration=pH>7
half-way to equivalence point of a weak acid/strong base titration pH =pka
where
pH gives the measure of the amount of concentration of hydrogen ions in an aqueous solution.
pKa is known as acid dissociation constant which explains the equilibrum at which a chemical species can give out or receive proton
pka₂ is the acid dissociation constant for the second ionization energy.
Answer:
189 Joules
Explanation:
Applying,
Q = cm(t₂-t₁)............. equation 1
Where Q = Heat, c = specific heat capacity of water, m = mass of water, t₁ = Initial Temperature, t₂ = Final temperature.
From the question,
Given: m = 15 grams = 0.015 kg, t₁ = 21 °C, t₂ = 24 °C
Constant: c = 4200J/kg.°C
Substitute these values into equation 1
Q = 0.015×4200×(24-21)
Q = 0.015×4200×3
Q = 189 Joules
Answer:
The number of hydrogen atoms is 4.96x10²⁴.
Explanation:
The number of atoms can be found with the following equation:

Where:
N: is the Avogadro's number = 6.022x10²³ atoms/mol
η: is the number of moles of hydrogen
n: is the number of hydrogen atoms
First, we need to find the number of hydrogen moles. The number of moles of CH₄ is:

Where:
m: is the mass of methane = 33 g
M: is the molar mass of methane = 16.04 g/mol

Now, since we have 4 hydrogen atoms in 1 mol of methane, the number of moles of hydrogen is:

Hence, the number of hydrogen atoms is:

Therefore, the number of hydrogen atoms is 4.96x10²⁴.
I hope it helps you!
Answer: 25.5°C
Explanation: take the average of the reading i.e (25 + 26)/2= 25.5