Answer:
The system will try to balance the change by shifting toward the exothermic reaction, and the rate of the forward reaction will increase.
Explanation:
To balance the external cooling system has to give out heat so exothermic reaction will occur .
Answer:
The molecular formula is C12H18O3
Explanation:
Step 1: Data given
The empirical formula is C4H6O
Molecular weight is 212 g/mol
atomic mass of C = 12 g/mol
atomic mass of H = 1 g/mol
atomic mass of O = 16 g/mol
Step 2: Calculate the molar mass of the empirical formula
Molar mass = 4* 12 + 6*1 +16
Molar mass = 70 g/mol
Step 3: Calculate the molecular formula
We have to multiply the empirical formula by n
n = the molecular weight of the empirical formula / the molecular weight of the molecular formula
n = 70 /212 ≈ 3
We have to multiply the empirical formula by 3
3*(C4H6O- = C12H18O3
The molecular formula is C12H18O3
Answer:
The magnesium atom loses 2 electron to the 2 atoms of chlorine. The 7 valency electrons of each chlorine atom will now be 8 to attain stable configuration. The final compound is written as MgCl2.
Explanation:
Ionic compounds are compound formed from the transfer of electron(s). One atom of the element loses electron(s) while the other atom gains electron(s).
The compound Magnesium chloride is an ionic compound . The bond between an atom of magnesium and 2 atoms of chlorine is an ionic bonding.
The valency electron of magnesium is 2 electron , for the atom of magnesium to attain octet rule, it will easily lose it 2 electrons to the chlorine atoms.
The chlorine atom on the other hand has 7 valency electrons, to attain octet configuration it will most likely gain 1 electron to become stable.
The magnesium atom loses 2 electron to the 2 atoms of chlorine. The 7 valency electrons of each chlorine atom will now be 8 to attain stable configuration. The final compound is written as MgCl2.
Answer:
temperature
Explanation:
Celsius is a unit of temperature. Another example of this would be Kelvin or Fahrenheit.