Answer:
1.25377 m/s²
Explanation:
m = Mass of person
g = Acceleration due to gravity = 9.81 m/s²
= Coefficient of friction
= Slope
From Newton's second law

Applying
to the above equation and 

The acceleration of the same skier when she is moving down a hill is 1.25377 m/s²
Answer:
66 km
Explanation:
Given that:
The speed of the two trains = 33 km/h
The speed of the bird = 60 km/h
The distance apart between the two trains = 60 km
From the given information, we are being told that the two trains are going at the same speed. Therefore, they will definitely collide at 30 km
We know that:
speed of the train = distance traveled × time
Making the time t the subject of the formula:
time = speed of the train / distance traveled
time = 30 km / 33 km/h
time = 0.909 / hr
Thus, the bird flying at a given speed of 60 km/h in a time of 0.909 / hr will cover a total distance of :
distance (d) = speed of the bird/ time
distance (d) = 
distance (d) = 66 km
Answer:

Explanation:
From work energy theorem
Work done by all forces = Change in kinetic energy
Lets take
m= mass of object
h=height from the ground surface
initial velocity of object = 0 m/s
The final velocity of object is v
Work done by gravitational force = m g . h
The final kinetic energy = 1/2 m v²
So
Work done by all forces = Change in kinetic energy
m g h = 1/2 m v² - 0
v² = 2 g h

D. I hope my answer helps you!
Hi!
We call these stars <em>main sequence </em>stars. Main sequence stars actually make up around 90% of the stars in our universe!
An interesting thing to note is that our sun is actually a <em />yellow dwarf star, which is a <em>small </em>main sequence star.
Hopefully, this helps! =)