Answer:
-2.5 m/s²
Explanation:
The acceleration of a body is the change in it's velocity with time.
The change in velocity with time can be obtained as the slope of a velocity time graph ;
Acceleration = (change in velocity / change in time)
Taking the slope :
Change in Velocity = △y = y2 - y1
Change in time = △x = x2 - x1
(10, 15) ; (0, 40)
△y / △x = y2 - y1 / x2 - x1 = (40 - 15) / (0 - 10)
△y / △x = 25 / - 10 = - 2.5 m/s²
<span>The best and most correct answer among the choices provided by the question is the second choice. The temperature of the substance is directly proportional to the average kinetic energy of the molecules. </span><span>I hope my answer has come to your help. God bless and have a nice day ahead!</span>
Answer:


-0.04194 V
Explanation:
= Number of turns in outer solenoid = 330
= Number of turns in inner solenoid = 22
= Current in inner solenoid = 0.14 A
= Rate of change of current = 1800 A/s
= Vacuum permeability = 
r = Radius = 0.0115 m
Magnetic field is given by

The average magnetic flux through each turn of the inner solenoid is 
Magnetic flux is given by

Mutual inductance is given by

The mutual inductance of the two solenoids is 
Induced emf is given by

The emf induced in the outer solenoid by the changing current inthe inner solenoid is -0.04194 V
For problems especially pertaining motion, it is best to illustrate the problem to help you understand the problem. The picture I've attached is my illustration based on what I understood from the problem. Suppose the diamond in the picture is the nozzle. It is placed 1.5 m above the ground (bold horizontal line). The water coming out of the nozzle follows the direction of the arrows until it falls to the ground next to you holding the nozzle. When you turn it off, the water at the topmost part slowly comes back to the ground in 1.8 seconds.
Unfortunately, you weren't able to complete the problem. However, I would make a smart guess. I think it is logical that the problem would ask how high did the water shoot upwards from the nozzle, denoted as x. In order to solve this, we use the equations for free-falling objects:
t = √2h/g
1.8 = √2h/9.81
h = 15.9 m
To find the height of the water from the nozzle, we subtract the total height to 1.5 m to determine x.
x = 15.9 - 1.5 =
14.4 m