when the two waves interfere with eachother to make a dark spot the periodic difference of the two waves is π . the wave length for 2π is 600nm
. ie. for π difference it is 300nm
Answer:
A different answer to this is AI
Explanation:
Answer:
2.8351×10^7 N/kg
Explanation:
We know that,
W = mg -------(1)
where W = weight, m = mass, g = gravitational acceleration
Also from Newton's law of gravitation we know that,
F = GMm/r²
Where,
F = gravitational force,
G = universal gravitational constant
M,m = masses of object under gravitational influence
r = distance between the two center of masses.
Here we get
F = (Gm/r²)M -------(2)
From 1 and 2
The acceleration due to gravity = gravitational field intensity
So if you consider the gravitational field intensity at the surface of the asteroid,it is equal to the acceleration due to gravity at the same place.
So we get,
g = (6.67×10^-11)×9.3835×10^20/(47²) = 2.8351×10^7 N/kg
Answer:
<h2>0.245cm/min</h2>
Explanation:
The volume of the spherical balloon is expressed as V = 4/3πr³ where r is the radius of the spherical balloon. If the spherical balloon is inflated with gas at the rate of 500 cubic centimetres per minute then dV/dt = 500cm³.
Using chain rule to express dV/dt;
dV/dt = dV/dr*dr/dt
dr/dt is the rate at which the radius of the gallon is increasing.
From the formula, dV/dr = 3(4/3πr^3-1))
dV/dr = 4πr²
dV/dt = 4πr² *dr/dt
500 = 4πr² *dr/dt
If radius r = 40;
500 = 4π(40)² *dr/dt
500 = 6400π*dr/dt
dr/dt = 500/6400π
dr/dt = 5/64π
dr/dt = 0.245cm/min
Hence, the radius of the balloon is increasing at the rate of 0.245cm/min