Answer:
1. 18.25 m/s
2. 0 m/s
Explanation:
1.So the centripetal acceleration of the ball at this lowest point must be, taking gravity into account

The speed at this point would then be


2. Similarly, if T = mg, then the centripetal acceleration must be

As the ball has no centripetal acceleration, its speed must also be 0 as well.
Answer:
the weight of the large stone is greater than a small one
Explanation:
because the large stone has greater mass then the small stone.therefore it is difficult to lift the large stone on the surface of the earth but easy to lift the small one
To solve the problem it is necessary to use the concepts of Orbital Speed considering its density, and its angular displacement.
In general terms the Orbital speed is described as,

PART A) If the orbital speed of a star in this galaxy is constant at any radius, then,




PART B) This time we have
, where
is the angular velocity (constant at this case)




PART C) If the total mass interior to any radius r is a constant,




Answer:
How do mass and speed affect kinetic energy?
Explanation:
This was edges sample resopnse so do not copy and just put this in your own words.
Have a great day whoever reads this.
Answer:
The wave in the string travels with a speed of 528.1 m/s
Explanation:
Wave speed of sound waves in a string, v, is related to the Tension in the string, T, and the mass per unit length, μ, by the relation,
v = √(T/μ)
μ = 5.20 × 10⁻³ kg/m
T = 1450N
v = √(1450/0.0052) = 528.1 m/s
Hope this Helps!!!