Answer:
Your answer would be D. be pushed down into their seats.
Explanation:
You can think of it this way:
If you're not wearing a seat belt on an airplane that drops suddenly, in this case, vertically, which often happens with turbulence- you're the one at rest. You'll stay at rest as the plane (literally) drops out from under you.
If you're strapped in, the seat belt serves as an outside force acting on you, taking you with the plane as it drops and saving you from hitting the ceiling.
Always remember Newton's first law of motion: A body at rest will remain at rest unless an outside force acts on it.
m₁ = mass of sample of copper = m₂ = mass of sample of aluminum = 5 g
T = initial temperature of copper = initial temperature of aluminum
T₁ = final temperature of copper
T₂ = final temperature of aluminum
c₁ = specific heat of copper = 0.09 cal/g°C
c₂ = specific heat of aluminum = 0.22 cal/g°C
Since both receive same amount of heat, hence
Q₁ = Q₂
m₁ c₁ (T₁ - T) = m₂ c₂ (T₂ - T)
(5) (0.09) (T₁ - T) = (5) (0.22) (T₂ - T)
T₁ - T = (2.44) (T₂ - T)
Change in temperature of copper = (2.44) change in temperature of aluminum
hence the correct choice is
c. The copper will get hotter than the aluminum.
How might a suit of armor be a good analogy for a function of the skeletal system?
It's a frame for your body and protects organs and armor protects your body from injury