Answer:
This can be solved using Dalton's Law of Partial pressures. This law states that the total pressure exerted by a gas mixture is equal to the sum of the partial pressure of each gas in the mixture as if it exist alone in a container. In order to solve, we need the partial pressures of the gases given. Calculations are as follows:
Explanation:
P = 3.00 atm + 2.80 atm + 0.25 atm + 0.15 atm
P = 6.8 atm
3.5 atm = x (6.8 atm)
x = 0.51
Answer:
4.43 g of Oxygen
Explanation:
As shown in Chemical Formula, one mole of Aluminium Sulfate [Al₂(SO₄)₃] contains;
2 Moles of Aluminium
3 Moles of Sulfur
12 Moles of Oxygen
Also, the Molar Mass of Aluminium Sulfate is 342.15 g/mol. It means,
342.15 g ( 1 mole) of Al₂(SO₄)₃ contains = 192 g (12 mole) of O
So,
7.9 g of Al₂(SO₄)₃ will contain = X g of O
Solving for X,
X = (7.9 g × 192 g) ÷ 342.15 g
X = 4.43 g of Oxygen
Answer:
ive learned about the chart , ive learned about the coolest chemicle reactions and how. the can change colors , ive also learned that chenistrey is all around us since the beginning of life ,and how liquid can turn solid
Explanation:
The correct answer is option b, that is, triggered by changes in the weather.
Hibernation refers to a state of lower metabolism and inactivity usually witnessed in endotherms. This condition is featured by a slow heart rate, slow breathing, low metabolic rate, and low body temperature. It assists the majority of the endotherms to thrive in the cold seasons. For example, hibernation of a bear in winters. Therefore, weather change can stimulate hibernation.
Answer:
pH = 12.22
Explanation:
<em>... To make up 170mL of solution... The temperature is 25°C...</em>
<em />
The dissolution of Barium Hydroxide, Ba(OH)₂ occurs as follows:
Ba(OH)₂ ⇄ Ba²⁺(aq) + 2OH⁻(aq)
<em>Where 1 mole of barium hydroxide produce 2 moles of hydroxide ion.</em>
<em />
To solve this question we need to convert mass of the hydroxide to moles with its molar mass. Twice these moles are moles of hydroxide ion (Based on the chemical equation). With moles of OH⁻ and the volume we can find [OH⁻] and [H⁺] using Kw. As pH = -log[H⁺], we can solve this problem:
<em>Moles Ba(OH)₂ molar mass: 171.34g/mol</em>
0.240g * (1mol / 171.34g) = 1.4x10⁻³ moles * 2 =
2.80x10⁻³ moles of OH⁻
<em>Molarity [OH⁻] and [H⁺]</em>
2.80x10⁻³ moles of OH⁻ / 0.170L = 0.01648M
As Kw at 25°C is 1x10⁻¹⁴:
Kw = 1x10⁻¹⁴ = [OH⁻] [H⁺]
[H⁺] = Kw / [OH⁻] = 1x10⁻¹⁴/0.01648M = 6.068x10⁻¹³M
<em>pH:</em>
pH = -log [H⁺]
pH = -log [6.068x10⁻¹³M]
<h3>pH = 12.22</h3>