The ion with a +3 charge would be deflected the most by the magnet because it has the strongest positive charge therefore it will be the one being the most repelled. and the ion that would be deflected the least would be the ion with a +1 charge because it has the least amount of charge so the magnet will still repel it but just not as much as it will repel the ion with a +3 charge.
hope that helps
Answer:
0.0917 mol Co(CrO₄)₃
General Formulas and Concepts:
<u>Chemistry - Atomic Structure</u>
- Reading a Periodic Table
- Using Dimensional Analysis
Explanation:
<u>Step 1: Define</u>
37.3 g Co(CrO₄)₃
<u>Step 2: Identify Conversions</u>
Molar Mass of Co - 58.93 g/mol
Molar Mass of Cr - 52.00 g/mol
Molar Mass of O - 16.00 g/mol
Molar Mass of Co(CrO₄)₃ - 58.93 + 3(52.00) + 12(16.00) = 406.93 g/mol
<u>Step 3: Convert</u>
<u />
= 0.091662 mol Co(CrO₄)₃
<u>Step 4: Check</u>
<em>We are given 3 sig figs. Follow sig fig rules and round.</em>
0.091662 mol Co(CrO₄)₃ ≈ 0.0917 mol Co(CrO₄)₃
Answer:
detail is given below.
Explanation:
This law was given by French chemist Antoine Lavoisier in 1789. According to this law mass of reactant and mass of product must be equal, because masses are not created or destroyed in a chemical reaction.
Law of conservation of mass:
According to the law of conservation mass, mass can neither be created nor destroyed in a chemical equation.
For example:
In given photosynthesis reaction:
6CO₂ + 6H₂O → C₆H₁₂O₆ + 6O₂
The given equation is balanced chemical equation of photosynthesis. There are six carbon atoms, eighteen oxygen atoms and twelve hydrogen atoms on the both side of equation so this reaction followed the law of conservation of mass.
If equation is not balanced,
CO₂ + H₂O → C₆H₁₂O₆ + O₂
It can not follow the law of conservation of mass because mass is not equal on both side of equation.
Your question isn’t typed right :(