In order to compute the torque required, we may apply Newton's second law for circular motion:
Torque = moment of inertia * angular acceleration
For this, we require the angular acceleration, α. We may calculate this using:
α = Δω/Δt
The time taken to achieve rotational speed may be calculated using:
time = 1 revolution * 2π radians per revolution / 3.5 radians per second
time = 1.80 seconds
α = (3.5 - 0) / 1.8
α = 1.94 rad/s²
The moment of inertia of a thin disc is given by:
I = MR²/2
I = (0.21*0.1525²)/2
I = 0.002
τ = 1.94 * 0.002
τ = 0.004
The torque is 0.004
The answer is B
because if you compare a regular road and ice... ice is smoother and therefore has less friction
Answer:
57 N
Explanation:
Were are told that the force
of gravity on Tomas is 57 N.
And it acts at an inclined angle of 65°
Thus;
The vertical component of the velocity is; F_y = 57 sin 65
While the horizontal component is;
F_x = 57 cos 65
Thus;
F_y = 51.66 N
F_x = 24.09 N
The net force will be;
F_net = √((F_y)² + (F_x)²)
F_net = √(51.66² + 24.09²)
F_net = √3249.0837
F_net = 57 N
<u>Given</u><u>:</u>
- An object has a forward force = 100N
- An object has a reverse force = 25N
<u>To</u><u> </u><u>find</u><u> </u><u>out</u><u>:</u>
What is the resultant force?
<u>Solution</u><u>:</u>
Resultant Force = Forward force + Reserve force
= 100 N + ( - 25 N )
= 75 N
Well, a curler uses heat to calm down friction so I am not sure