No. A mirror works because of reflection.
Answer:
The angle that the wave would be 
Explanation:
From the question we are told that the opening to the harbor acts just like a single-slit so a boat in the harbor that at angle equal to the second diffraction minimum would be safe and the on at angle greater than the diffraction first minimum would be slightly affected
The minimum is as a result of destructive interference
And for single-slit this is mathematically represented as

where D is the slit with
is the angle relative to the original direction of the wave
m is the order of the minimum j
is the wavelength
Now since in the question we are told to obtain the largest angle at which the boat would be safe
And the both is safe at the angle equal to the second minimum then
The the angle is evaluated as
![\theta = sin ^{-1}[\frac{m\lambda}{D} ]](https://tex.z-dn.net/?f=%5Ctheta%20%3D%20sin%20%5E%7B-1%7D%5B%5Cfrac%7Bm%5Clambda%7D%7BD%7D%20%5D)
Since for second minimum m= 2
The equation becomes

Answer:
16 km
Explanation:
Drawing a right triangle to model the problem helps. I started by drawing the lines of the triangle to model the hiker's journey- a vertical straight line for 11 km north and then a horizontal line connected to the top of it for 11 km east; I then drew the hypothenuse to connect the two lines.
The hypothenuse is what we have to solve for, so we will use the Pythagorean Theorem, a^2 + b^2 = c^2. Since both distances are 11 km both a and b in the equation are 11.
11^2 + 11^2 = c^2
121 + 121 = c^2
242 = c^2
c = 15.56
Rounding the answer makes it 16 km for the hiker's magnitude of displacement.
Answer: 250n
Explanation:
The formula for gravitational force is: F = (gMm)/r^2
There are two factors at play here:
1) The mass of the planet 'M'
2) The radius 'r'
We can ignore the small M and the g, they are constants that do not alter the outcome of this question.
You can see that both M and r are double that of earth. So lets say earth has M=1 and r=1. Then, new planet would have M=2 and r=2. Let's sub these two sets into the equation:
Earth. F = M/r^2 = 1/1
New planet. F = M/r^2 = 2/4 = 1/2
So you can see that the force on the new planet is half of that felt on Earth.
The question tells us that the force on earth is 500n for this person, so then on the new planet it would be half! So, 250n!