The law of conservation of momentum<span> states that for two objects colliding in an isolated system, the total </span>momentum<span> before and after the collision is equal. Momentum should be conserved. Hope this answers the question. Have a nice day.</span>
Answer:
yes I think I must have a tree of me I hope it will help you please follow me
Answer:
Aluminium
Explanation:
When a body is immersed in a liquid partly or wholly it experiences an upward force which is called buoyant force.
The amount of buoyant force depends on the volume of body immersed, density of liquid and the value of acceleration due to gravity.
Here, the density of liquid is same in both the cases and g be the same. So, here the amount of buoyant force depends on the volume of body immersed.
As the density of lead is more than the density of aluminium, so the volume of aluminium is more than lead, as volume is equal to mass divided by density. So, the buoyant force acting on the aluminium is more than lead.
F - False.
The law of conservation of momentum states that the total momentum is conserved.
<span>Her center of mass will rise 3.7 meters.
First, let's calculate how long it takes to reach the peak. Just divide by the local gravitational acceleration, so
8.5 m / 9.8 m/s^2 = 0.867346939 s
And the distance a object under constant acceleration travels is
d = 0.5 A T^2
Substituting known values, gives
d = 0.5 9.8 m/s^2 (0.867346939 s)^2
d = 4.9 m/s^2 * 0.752290712 s^2
d = 3.68622449 m
Rounded to 2 significant figures gives 3.7 meters.
Note, that 3.7 meters is how much higher her center of mass will rise after leaving the trampoline. It does not specify how far above the trampoline the lowest part of her body will reach. For instance, she could be in an upright position upon leaving the trampoline with her feet about 1 meter below her center of mass. And during the accent, she could tuck, roll, or otherwise change her orientation so she's horizontal at her peak altitude and the lowest part of her body being a decimeter or so below her center of mass. So it would look like she jumped almost a meter higher than 3.7 meters.</span>