Answer:
Orbital speed=8102.39m/s
Time period=2935.98seconds
Explanation:
For the satellite to be in a stable orbit at a height, h, its centripetal acceleration V2R+h must equal the acceleration due to gravity at that distance from the center of the earth g(R2(R+h)2)
V2R+h=g(R2(R+h)2)
V=√g(R2R+h)
V= sqrt(9.8 × (6371000)^2/(6371000+360000)
V= sqrt(9.8× (4.059×10^13/6731000)
V=sqrt(65648789.18)
V= 8102.39m/s
Time period ,T= sqrt(4× pi×R^3)/(G× Mcentral)
T= sqrt(4×3.142×(6.47×10^6)^3/(6.673×10^-11)×(5.98×10^24)
T=sqrt(3.40×10^21)/ (3.99×10^14)
T= sqrt(0.862×10^7)
T= 2935.98seconds
One of the equations of gravity is this:

Where v = final velocity which is 7m/s
u = initial velocity which is 0 for objects falling from a height
g = acceleration due to gravity and it is approximately 10m/s^2. It's a constant so pretty much remember this number. It's positive since the work being done is caused by gravity (in other words, it's falling down). It can also be negative if the work being down is against gravity (in other words, it's going up)
h = height of object
Substitute for the values and you should have something like this



Answer:
D.) 1m/s
Explanation:
Assume the initial angle of the swing is 12.8 degree with respect to the vertical. We can calculate the vertical distance from this initial point to the lowest point by first calculate the vertical distance from this point the the pivot point:

where L is the pendulum length
The vertical distance from the lowest point to the pivot point
is the pendulum length 2m
this means the vertical distance from this initial point to the lowest point is simply:

As the pendulum travel (vertically) from the initial point to the bottom point, its potential energy is converted to kinetic energy:


where m is the mass of the pendulum, g = 10 m/s2 is the constant gravitational acceleration, h = 0.05 is the vertical it travels, v is the pendulum velocity at the bottom, which we are trying to solve for.
The m on both sides of the equation cancel out


so D is the correct answer
Answer:
Solution given:
height [H]=25m
initial velocity [u]=8.25m/s
g=9.8m/s
now;
a. How long is the ball in flight before striking the ground?
Time of flight =?
Now
Time of flight=
substituting value
- =

- =2.26seconds
<h3>
<u>the ball is in flight before striking the ground for 2.26seconds</u>.</h3>
b. How far from the building does the ball strike the ground?
<u>H</u><u>o</u><u>r</u><u>i</u><u>z</u><u>o</u><u>n</u><u>t</u><u>a</u><u>l</u><u> </u>range=?
we have
Horizontal range=u*
<h3>
<u>The ball strikes 18.63m far from building</u>. </h3>
Positive feedback interactions in earth’s systems are always a result of human action is a FALSE statement.
<u>Explanation:</u>
Earth is a unstable equilibrium which tends to move out of equilibrium, but several other factors try to bring it back in equilibrium again. Earth has a different actions going on both on its surface and also inside it.
Human can alter, or can modify a very small part of the events that occur on earth’s surface. But they don’t have any control on what’s going inside earth’s core. So positive feedback interactions are not only the results of human interaction, but also different other factors.