Assuming motion is on a straight path, the result of two positive components of a vector would also be a positive value since both are having positive signs and directions. The direction would be the same with the motion as well. Hope this answers the question. Have a nice day.
Answer:
Temperature decreases because the number of collision of the molecules decreases as they escape or evaporate. Molecules are in constant motion. Increase in temperature leads to increase in average kinetic energy of the molecules.
Answer:
270 μA
Explanation:
Use the magnetic field due to long, straight wire and solve for current I.


plug in the values

= 2.7×10^{-4)×10^6
=270 μA
The current that flows in the heart is 270 μA
Answer:
the magnitude of the total angular momentum of the blades is <em>743.71 kg·m²</em>
Explanation:
Converting the angular speed into radians per second:
ω = 334 rpm · (2π rad / 1 rev) · (1 min / 60 s)
ω = 34.98 rad/s
The rotational kinetic energy of the blades is given by:
EK = 1/2 I ω²
where
- I is the moment of inertia
- ω is the angular speed
Therefore, rearranging the above equation, we get:
1/2 I ω² = EK
I ω² = 2 EK
I = 2(EK) / ω²
I = 2(4.55 × 10⁵ J) / (34.98 rad/s)²
<em>I = 743.71 kg·m²</em>
<em></em>
Therefore, the magnitude of the total angular momentum of the blades is <em>743.71 kg·m²</em>.
To solve this problem we will use the concepts related to hydrostatic pressure. Which determines the pressure of a body at a given depth of a liquid.
Mathematically this can be described as

Here
= Density
g = Gravity
h = Height (Depth)
If we replace the values given in the equation we will have to


Therefore the pressure at the bottom will be 9.8kPa