Answer:
The first law, also called the law of inertia, was pioneered by Galileo. This was quite a conceptual leap because it was not possible in Galileo's time to observe a moving object without at least some frictional forces dragging against the motion. In fact, for over a thousand years before Galileo, educated individuals believed Aristotle's formulation that, wherever there is motion, there is an external force producing that motion.
The second law, $ f(t)=m\,a(t)$ , actually implies the first law, since when $ f(t)=0$ (no applied force), the acceleration $ a(t)$ is zero, implying a constant velocity $ v(t)$ . (The velocity is simply the integral with respect to time of $ a(t)={\dot v}(t)$ .)
Newton's third law implies conservation of momentum [138]. It can also be seen as following from the second law: When one object ``pushes'' a second object at some (massless) point of contact using an applied force, there must be an equal and opposite force from the second object that cancels the applied force. Otherwise, there would be a nonzero net force on a massless point which, by the second law, would accelerate the point of contact by an infinite amount.
Explanation:
According to Boyle's Law, volume is inversely proportional to pressure. It means
if the volume of a gas goes up the pressure goes down and if the volume of the gas goes up the pressure goes down. When the pressure of air inside the inflated balloon is more than the atmospheric pressure outside the balloon. And also when the density inside is greater than the density outside. The molecules inside the balloon move and bang around the inner walls which produces force, which provides the pressure of an enclosed air.
Answer:
0.173 m.
Explanation:
The fundamental frequency of a closed pipe is given as
fc = v/4l .................. Equation 1
Where fc = fundamental frequency of a closed pipe, v = speed of sound l = length of the pipe.
Making l the subject of the equation,
l = v/4fc ................ Equation 2
also
v = 331.5×0.6T ................. Equation 3
Where T = temperature in °C, T = 18.0 °c
Substitute into equation 3
v = 331.5+0.6(18)
v = 331.5+10.8
v = 342.3 m/s.
Also given: fc = 494 Hz,
Substitute into equation 2
l = 342.3/(4×494)
l = 342.3/1976
l =0.173 m.
Hence the length of the organ pipe = 0.173 m.
<span>16.82 x 0.04 = 0.67 rad
I hope I helped if you really need I can explain to you how I got that answer but Thats correct im sorry it took 2 days for me to find this answer but if you or anybody else still needs the answer for this question here it is :) have a fantastic day guys Spring Break is coming up soon :)</span>
Answer:
Speed = 300 m/s
Explanation:
Given the following data;
Frequency = 150 Hz
Wavelength = 2 meters
To find the speed of the wave;
Mathematically, the speed of a wave is given by the formula:
Substituting into the formula, we have;
Speed = 300 m/s