Based on the information in the question, a light year is the distance traveled light in one year. Then if the light from the star Centauri takes 4.2 years to reach the earth, then its distance from earth is 4.2 light years.
Answer:
idk butttttt.... i had fun talking to u yesterday and the other conversation is getting a little....uhm....how do i say this.....weird.....everyone is friends now¯\_('-')_/¯
Explanation:
The gravitational force between two objects is given by:

where
G is the gravitational constant
m1 and m2 are the masses of the two objects
r is the separation between the two objects
The distance of the telescope from the Earth's center is

, the gravitational force is

and the mass of the Earth is

, therefore we can rearrange the previous equation to find m2, the mass of the telescope:
Answer:
<h2>121ohms</h2>
Explanation:
Formula used for calculating power P = current * voltage
P = IV
From ohms law, V = IR where R is the resistance. Substituting V = IR into the formula for calculating power, we will have;
P = IV
P =(V/R)V
P = V²/R
Given parameters
Power rating of the bulb P = 100 Watts
Source voltage V = 110V
Required
Resistance of the bulb R
Substituting the given parameters into the formula for calculating power to get Resistance R;
P = V²/R
100 = 110²/R
R = 110²/100
R = 110 * 110/100
R = 12100/100
R = 121 ohms
<em>Hence, the resistance of this bulb is 121 ohms</em>
Answer:
The soda is being sucket out at a rate of 3.14 cubic inches/second.
Explanation:
R= 2in
S= π*R²= 12.56 inch²
rate= 0.25 in/sec
rate of soda sucked out= rate* S
rate of soda sucked out= 3.14 inch³/sec