Gases, liquids and solids are all made up of atoms, molecules, and/or ions, but the behaviors of these particles differ in the three phases. The following figure illustrates the microscopic differences.
Microscopic view of a gas Microscopic view of a liquid. Microscopic view of a solid.
Microscopic view of a gas. Microscopic view of a liquid. Microscopic view of a solid.
Note that:
Particles in a:
gas are well separated with no regular arrangement.
liquid are close together with no regular arrangement.
solid are tightly packed, usually in a regular pattern.
Particles in a:
gas vibrate and move freely at high speeds.
liquid vibrate, move about, and slide past each other.
solid vibrate (jiggle) but generally do not move from place to place.
Liquids and solids are often referred to as condensed phases because the particles are very close together.
The following table summarizes properties of gases, liquids, and solids and identifies the microscopic behavior responsible for each property.
1.3s
Explanation:
Given parameters:
Height = 1.4m
Gravity on moon = 1.67ms⁻¹
Unknown:
Time for feather to fall = ?
Solution:
To solve this problem, we are going to use one of the motion equation that relates time, gravity and height.
H = ut + 
Sine the body was dropped from rest, initial velocity is zero;
H = height
u = initial velocity
t = time
g = acceleration due to gravity
since u = 0;
H = 
1.4 =
x 1.67 x t²
t = 1.3s
learn more:
Gravity brainly.com/question/10934170
#learnwithBrainly
Answer:
In an ideal pulley system is assumed as a perfect system, and the efficiency of the pulley system is taken as 100% such that there are no losses of the energy input to the system through the system's component
However, in a real pulley system, there are several means through which energy is lost from the system through friction, which is converted into heat, sound, as well as other forms of energy
Given that the mechanical advantage = Force output/(Force input), and that the input force is known, the energy loss comes from the output force which is then reduced, and therefore, the Actual Mechanical Advantage (AMA) is less than the Ideal Mechanical Advantage of an "ideal" pulley system
The relationship between the actual and ideal mechanical advantage is given by the efficiency of the pulley system as follows;

Explanation:
Compared with the amount of current in the filament of a lamp, the amount of current in the connecting wire is
D. the same.
As per the rule, the amount of current in devices connected in series is equal. here in the given situation , the wire is in series with the filament. that is the reason that the current in filament and wire is same.
hence the correct choice is D)