Answer:

Explanation:
Total internal reflection can happen when light goes from a medium with higher refractive index (in this case, glass) to a medium with lower refractive index (in this case, water).
Snell's Law tells us that
, where the <em>i</em> stands for incident (in this case, glass) and the <em>r</em> for refracted (in this case, water). We want to know when
, that is, when
, and this happens when the incident angle is:

Which for our values means:

I believe the blank would simply be behaviour adaptations. Behavioural adaptations are behaviours that organisms demonstrate to help them better survive and reproduce in a habitat. Hope that helps!!
Answer:
4.7 m³
Explanation:
We'll use the gas law P1 • V1 / T1 = P2 • V2 / T2
* Givens :
P1 = 101 kPa , V1 = 2 m³ , T1 = 300.15 K , P2 = 40 kPa , T2 = 283.15 K
( We must always convert the temperature unit to Kelvin "K")
* What we want to find :
V2 = ?
* Solution :
101 × 2 / 300.15 = 40 × V2 / 283.15
V2 × 40 / 283.15 ≈ 0.67
V2 = 0.67 × 283.15 / 40
V2 ≈ 4.7 m³
Answer:
option ( a ) is correct .
Explanation:
Escape velocity on the earth = √ ( 2 GM / R )
where G is universal gravitational constant , M is mass of the earth and R is radius .
V₀ = √ ( 2 GM / R )
escape velocity on the planet where mass is equal is earth's mass and radius is 4 times that of the earth
Radius of the planet = 4 R
escape velocity of planet = √ ( 2 GM / 4R )
= .5 x √ ( 2 GM / R )
= .5 V₀
option ( a ) is correct .