Answer:The deltoid is a muscle in the shoulder It has the shape of a hollow semi-cone
Explanation:
Hello!
Recall the period of an orbit is how long it takes the satellite to make a complete orbit around the earth. Essentially, this is the same as 'time' in the distance = speed * time equation. For an orbit, we can define these quantities:
← The circumference of the orbit
speed = orbital speed, we will solve for this later
time = period
Therefore:

Where 'r' is the orbital radius of the satellite.
First, let's solve for 'v' assuming a uniform orbit using the equation:

G = Gravitational Constant (6.67 × 10⁻¹¹ Nm²/kg²)
m = mass of the earth (5.98 × 10²⁴ kg)
r = radius of orbit (1.276 × 10⁷ m)
Plug in the givens:

Now, we can solve for the period:

The force tending to lift the load (vertical force) is equal to <u>22.5N.</u>
Why?
Since the boy is pulling a load (150N) with a string inclined at an angle of 30° to the horizontal, the total force will have two components (horizontal and vertical component), but we need to consider the given information about the tension of the string which is equal to 105N.
We can calculate the vertical force using the following formula:

Hence, we can see that <u>the force tending to lift the load</u> off the ground (vertical force) is equal to <u>22.5N.</u>
Have a nice day!
Answer:
<h2>D</h2>
Explanation:
The momentum of an object can be found by using the formula
momentum = mass × velocity
From the question
mass = 2 kg
velocity/speed = 3 m/s
We have
momentum = 2 × 3 = 6
We have the final answer as
<h3>6 kg.m/s</h3>
Hope this helps you
Answer:
The correct option is B
Explanation:
Although, it is common knowledge that in an electric field, unlike charges attract and like charges repel. However, to build up an electric potential, a positive charge is brought close to another positive charge - this causes work done to be changed to electric potential energy and stored in the electric field.
It should however be noted that when a negative charge is moved away from a positive charge, the negative charge gains electric potential energy.