Answer:
this slow site thinks the answer is a link
Explanation:
this was a week ago so i dont know if u still need help
Answer:
Bb
Explanation:
If the fish is brown, it had the dominant genotype.
As we know that as per Newton's II law we have

here we will have
= change in momentum
= time interval in which momentum is changed
now in order to have least injury during jumping we need to have least force on the jumper
so in order to have least force we can say that the momentum must have to change in maximum time so that amount of force must be least
So we need to increase the time in which momentum of the system is changed
Answer:
the amount of heat that gets through both the wires will be same.
Explanation:
By the Fourier's law of conduction we have:

where:
= rate of heat transfer
k = thermal conductivity of the material
A = area of the material
dT = temperature difference across the length dx
According to the question, the system to be analysed is isolated from the surrounding.
Until the thermal equilibrium is established between aluminium and copper wires the amount of heat that gets through both the wires will be same.
<em>But the rate of heat transfer through the aluminium will be greater as it has double the thermal conductivity of copper.</em>
Answer:
The acceleration of the refrigerator is 
Explanation:
The expression of the equation of the net force acting on the refrigerator is as follows;
F-f= ma
Here, F is the applied force, f is the force of friction, m is the mass and a is the acceleration.
It is given in the problem that you're having a hard time pushing a refrigerator having mass 355 kg across the kitchen floor. The force of your own push is 993 N. The force of friction opposing your own push is 973 N.
Put F= 993, f= 973 N and m = 355 kg in the above expression of the equation to calculate the acceleration of the refrigerator.
993 - 973 = (355)a
20 = 355 a

Therefore, the acceleration of the refrigerator is
.