<h2>Answer: in a gaseous state
</h2>
The average kinetic energy of the water molecules is greater in its gaseous state (in the form of water steam).
This is because in the gaseous state the water molecules are well separated from each other and can move freely in all the available space they have; because there are no cohesion forces that bond them.
In contrast to the liquid and solid state, in which the molecules have less movement.
Answer:
<em>1.01 W/m</em>
Explanation:
diameter of the pipe d = 30 mm = 0.03 m
radius of the pipe r = d/2 = 0.015 m
external air temperature Ta = 20 °C
temperature of pipe wall Tw = 150 °C
convection coefficient at outer tube surface h = 11 W/m^2-K
From the above,<em> we assumed that the pipe wall and the oil are in thermal equilibrium</em>.
area of the pipe per unit length A =
=
m^2/m
convectional heat loss Q = Ah(Tw - Ta)
Q = 7.069 x 10^-4 x 11 x (150 - 20)
Q = 7.069 x 10^-4 x 11 x 130 = <em>1.01 W/m</em>
Answer:
The change in height of the mercury is approximately 2.981 cm
Explanation:
Recall that the formula for thermal expansion in volume is:

from which we solved for the change in volume
due to a given change in temperature 
We can estimate the initial volume of the mercury in the spherical bulb of diameter 0.24 cm ( radius R = 0.12 cm) using the formula for the volume of a sphere:

Therefore, the change in volume with a change in temperature of 36°C becomes:

Now, we can use this difference in volume, to estimate the height of the cylinder of mercury with diameter 0.0045 cm (radius r= 0.00225 cm):

Answer:
linear acceleration

angular acceleration

Explanation:
As we know that the force due to tension force is upwards while weight of the disc is downwards
so we will have

also we have

now we have


now we have


so we have
linear acceleration

angular acceleration

The least amount of inertia would be the one with least mass.
Of all the options, the smallest mass is likely the insect the cricket.
<span>A a cricket </span>