Answer:
31395 J
Explanation:
Given data:
mass of water = 150 g
Initial temperature = 25 °C
Final temperature = 75 °C
Energy absorbed = ?
Solution:
Formula:
q = m . c . ΔT
we know that specific heat of water is 4.186 J/g.°C
ΔT = final temperature - initial temperature
ΔT = 75 °C - 25 °C
ΔT = 50 °C
now we will put the values in formula
q = m . c . ΔT
q = 150 g × 4.186 J/g.°C × 50 °C
q = 31395 J
so, 150 g of water need to absorb 31395 J of energy to raise the temperature from 25°C to 75 °C .
Answer:
57.6g
Explanation:
So, if in one mole of water, 16 g of oxygen atom is present. Then, in 3.6 moles of water, the mass of oxygen present will be 3.6×16=57.6g. Therefore, the amount of oxygen present in 3.6 g water is option (B)- 57.6 g.
Answer:
[A]²
Explanation:
Since the formation is independent of D, D is 0 order.
Since a quadruples when it is doubled it can be written as
2A^X= 4
To find the unknown power we can assume A= 1 to make the math simple. So When a = 2 (Because you doubled it) raised to X power it will equal 4
so the unknown power is 2
Making the rate law
[a]²[b]⁰
or simply just
[A]²
The chemist the count the number of particles (Atoms, Molecules or Formula Unit) in a given number of moles of a substance by using following relationship.
Moles = # of Particles / 6.022 × 10²³
Or,
# of Particles = Moles × 6.022 × 10²³
So, from above relation it is found that 1 mole of any substance contains exactly 6.022 × 10²³ particles. Greater the number of moles greater will be the number of particles.
Answer:
First, precipitate of AgCl is formed. Second, a soluble complex of silver and ammonia is formed. Third, AgCl is reproduced due to disappearance of ammonia complex in presence of
.
Explanation:
In presence of NaCl,
forms an insoluble precipitate of AgCl.
Reaction: 
In presence of
, AgCl gets dissolved into solution due to formation of soluble
complex.
Reaction: ![AgCl(s)+2NH_{3}(aq.)\rightarrow [Ag(NH_{3})_{2}]^{+}(aq.)+ Cl^{-}(aq.)](https://tex.z-dn.net/?f=AgCl%28s%29%2B2NH_%7B3%7D%28aq.%29%5Crightarrow%20%5BAg%28NH_%7B3%7D%29_%7B2%7D%5D%5E%7B%2B%7D%28aq.%29%2B%20Cl%5E%7B-%7D%28aq.%29)
In presence of
,
complex gets destroyed and free
again reacts with free
to produce insoluble AgCl
Reaction: ![[Ag(NH_{3})_{2}]^{+}(aq.)+2H^{+}(aq.)+Cl^{-}(aq.)\rightarrow AgCl(s)+2NH_{4}^{+}(aq.)](https://tex.z-dn.net/?f=%5BAg%28NH_%7B3%7D%29_%7B2%7D%5D%5E%7B%2B%7D%28aq.%29%2B2H%5E%7B%2B%7D%28aq.%29%2BCl%5E%7B-%7D%28aq.%29%5Crightarrow%20AgCl%28s%29%2B2NH_%7B4%7D%5E%7B%2B%7D%28aq.%29)