1) Write the balanced equation to state the molar ratios:
<span>3H2(g) + N2(g) → 2NH3(g)
=> molar ratios = 3 mol H2 : 1 mol N2 : 2 mol NH3
What volume of nitrogen is needed to produce 250.0 L of ammonia gas at STP?
First, convert the 250.0 L of NH3 to number of moles at STP .
Use the fact that 1 mole of gas at STP occupies 22.4 L
=> 250.0 L * 1mol/22.4 L = 11.16 L
Second, use the molar ratio to find the number of moles of N2 that produces 11.16 L of NH3
=> 11.16 L NH3 * [1 mol N2 / 2 mol NH3] = 5.58 mol N2
Third, convert 5.58 mol N2 into liters at STP
=> 5.58 mol N2 * [22.4 L/mol] = 124.99 liters
Answer: 124,99 liters
What volume of hydrogen is needed to produce 2.50 mol NH3 at STP?
First, find the number of moles of H2 that produce 2.50 mol by using the molar ratios:
2.50 mol NH3 * [3mol H2 / 2 mol NH3] = 3.75 mol H2
Second, convert the number of moles to liters of gas at STP:
3.75 mol * 22.4 L/mol = 84 liters of H2
Answer: 84 liters
</span>
Answer:
2 and 4
Explanation:
The rest of the changes are chemical. 1 has a chemical reaction happen which makes light sticks glow. 3 is because browning the meat actually causes some new compounds to form and cause caramelization.
For 2, the oxygen is simply heating up and expanding which pops the balloon. 4 is just a phase change of water vapor to liquid water.
The average speed :
1. 10.44 m/s
2. 10.42 m/s
3. 9.26 m/s
The distance 100 m have the greatest average speed
<h3>Further explanation
</h3>
Given
Distance and time of runner
Required
Average speed
Solution
<em>
Average speed : total distance : total time
</em>
1. d = 100 m, t = 9.58 s
Average speed : 100 : 9.58 = 10.44 m/s
2. d=200 m, t=19.19 s
Average speed : 200 : 19.19 = 10.42 m/s
3. d=400 m, t = 43.18 s
Average speed : 400 : 43.18 = 9.26 m/s
The distance 100 m have the greatest average speed
The correct answer is 3.
A dynamic phase equilibrium is when a reversible reaction no longer changes its ratio of reactants to products. However, substances continue to move between the chemicals at an equal rate, which means the net change is 0. This is known as a steady state.