The artificial fixation of nitrogen (N2) has enormous energy, environmental, and societal impact, the most important of which is the synthesis of ammonia (NH3) for fertilizers that help support nearly half of the world's population.
<h3>Artificial fixation of nitrogen</h3>
a) The equilibrium constant expression is Kp=PCH4 PH2 OP CO×PH 23.
(b) (i) As the pressure increases, the equilibrium will shift to the left so that less number of moles are produced.
(ii) For an exothermic reaction, with the increase in temperature, the equilibrium will shift in the backward direction.
(iii) When a catalyst is used, the equilibrium is not disturbed. The equilibrium is quickly attained
To learn more about equilibrium constant visit the link
brainly.com/question/10038290
#SPJ4
A molecule of hydrogen is formed by two hydrogen atoms, that is a fact.
How does it work? When two atoms, known as "diatomic" pair with another in a bond known non-polar covalent bonds. Where they equally share electrons. A Hydrogen atoms needs 1 more electrons to fill its first shell fully and have a full valence shell. So if two H's share their electrons, they'll both have a full V-Shell!
That's the basics of both the H-H bond and all the other diatomic bonds as well.
Answer:
105 grams PbI₂
Explanation:
Pb(NO₃)₂ + 2KI => 2KNO₃ + PbI₂(s)
moles Pb(NO₃)₂ = 0.265L(1.2M) = 0.318 mole
moles KI = 0.293(1.55M) = 0.454 mole => Limiting Reactant
moles PbI₂ from mole KI in excess Pb(NO₃)₂ = 1/2(0.454 mole) = 0.227 mol PbI₂
grams PbI₂ = 0.227 mol PbI₂ x 461 g/mole = 104.68 g ≈ 105 g PbI₂(s)
The particles bunch together and can no longer move