Answer:
The chlorine gas and potassium bromide solution react to form liquid bromine and potassium chloride solution.
Explanation:
Chemical equation:
Cl₂(g) + KBr (aq) → KCl (aq) + Br₂(l)
Balanced chemical equation:
Cl₂(g) + 2KBr (aq) → 2KCl (aq) + Br₂(l)
This equation showed that the chlorine gas and potassium bromide solution react to form liquid bromine and potassium chloride solution.
Chlorine is more reactive than bromine it displace the bromine from potassium and form potassium chloride solution.
The given equation is balanced and completely hold the law of conservation of mass.
According to the law of conservation mass, mass can neither be created nor destroyed in a chemical equation.
Explanation:
This law was given by french chemist Antoine Lavoisier in 1789. According to this law mass of reactant and mass of product must be equal, because masses are not created or destroyed in a chemical reaction.
I think the answer is d not real fir sure I'll find out in the morning sorry
Answer:
It effects all of the cellular respiration process
Explanation:
It inhibits the Glycolysis. It replaces the phosphate groups that is needed for making Pyruvate and ATP.
<h3>Further explanation</h3>
Basic oxides ⇒ metal(usually alkali/alkaline earth) +O₂
L + O₂ ⇒ L₂O
L + O₂ ⇒ LO
Dissolve in water becomes = basic solution
L₂O+H₂O⇒ 2LOH
LO + H₂O⇒ L(OH)₂
So the basic oxides : Na₂O and MgO
Na₂O + H₂O⇒NaOH
MgO +H₂O⇒Mg(OH)₂
The aqueous solution of CO₂(dissolve in water)
CO₂ + +H₂O⇒ H₂CO₃(carbonic acid)