Answer: The molarity of the solution is 0.125 M
Explanation:
Molarity of a solution is defined as the number of moles of solute dissolved per liter of the solution.
where,
n = moles of solute
= volume of solution in L
moles of
=
Now put all the given values in the formula of molality, we get
Therefore, the molarity of the solution is 0.125 M
When water turns to steam,
D) the water absorbs energy which causes the water molecules to have more kinetic and potential energy changing their configuration from a liquid to a gas.
Hope this helps! :)
Given mass of Scandium = 50.0 g
Increase in temperature of the metal when heated = 
Heat absorbed by Scandium = 
The equation showing the relationship between heat, mass, specific heat and temperature change:

Where Q is heat = 
m is mass = 50.0 g
ΔT = 
On plugging in the values and solving for C(specific heat) we get,
=50.0g(C)(
)
C = 0.491
Specific heat of the metal = 0.491
Answer:
a. Ksp = 4s³
b. 5.53 × 10⁴ mol³/dm⁹
Explanation:
a. Obtain an expression for the solubility product of AB2(S),in terms of s.
AB₂ dissociates to give
AB₂ ⇄ A²⁺ + 2B⁻
Since 1 mole of AB₂ gives 1 mole of A and 2 moles of B, we have the mole ratio as
AB₂ ⇄ A²⁺ + 2B⁻
1 : 1 : 2
Since the solubility of AB₂ is s, then the solubility of A is s and that of B is 2s
So, we have
AB₂ ⇄ A²⁺ + 2B⁻
[s] [s] [2s]
So, the solubility product Ksp = [A²⁺][B⁻]²
= (s)(2s)²
= s(4s²)
= 4s³
b. Calculate the Ksp of AB₂, given that solubility is 2.4 × 10³ mol/dm³
Given that the solubility of AB is 2.4 × 10³ mol/dm³ and the solubility product Ksp = [A²⁺][B⁻]² = 4s³ where s = solubility of AB = 2.4 × 10³ mol/dm³
Substituting the value of s into the equation, we have
Ksp = 4s³
= 4(2.4 × 10³ mol/dm³)³
= 4(13.824 × 10³ mol³/dm⁹)
= 55.296 × 10³ mol³/dm⁹
= 5.5296 × 10⁴ mol³/dm⁹
≅ 5.53 × 10⁴ mol³/dm⁹
Ksp = 5.53 × 10⁴ mol³/dm⁹
Answer: The answer is D. This has a Carboxylic Acid group, and is acetic acid, or Ethanoic Acid.
ALWAYS LOOK for the Functional Group in question.
A. Would likely not stay in water, or at least not be acidic, for it is butane gas.
B. Is 1-propanol, and alcohols are not acidic as a rule. Certainly not in water.
C. This is an Ether. It will not give up an H+, it it not an acid.
E. This functional group is an amine, which is more “base” like, since the lone pairs of the Nitrogen atom would tend to attract a H+.