When t=2, the ball has fallen d(2) = 16 (2²) = 64 feet .
When t=5, the ball has fallen d(5) = 16 (5²) = 400 feet .
Distance fallen from t=2 until t=5 is (400 - 64) = 336 feet.
Time period between t=2 until t=5 is (5 - 2) = 3 seconds.
Average speed of the ball from t=2 until t=5 is
(distance covered) / (time to cover the distance)
= 336 feet / 3 seconds = 112 feet per second.
That's what choice-C says.
Ideal M.A. is 1 I.e, load =effort
Hello!
Recall the equation for gravitational force:

Fg = Force of gravity (N)
G = Gravitational constant
m1, m2 = masses of objects (kg)
r = distance between the objects' center of masses (m)
There is a DIRECT relationship between mass and gravitational force.
We are given:

If we were to double one mass and triple another, according to the equation:

Thus:

Answer:
limited liability, limitation in expansion, risk bearing, problem of continuity,