Answer: 4
Explanation:
when energy is greater then frequency should increase and wavelength should decrease.
Therefore answer is 4
(a) Does an electric field exert a force on a stationary charged object? YES ( F = Eq)
(b) Does a magnetic field do so?- NO ( F= qvB)
(c) Does an electric field exert a force on a moving charged object? YES
(d) Does a magnetic field do so? YES ( F = qvB)
(e) Does an electric field exert a force on a straight current-carrying wire? ( NO)
(f) Does a magnetic field do so? Yes
(g) Does an electric field exert a force on a beam of moving electrons? Yes
(h) Does a magnetic field do so? YeS
To know more about magnetic field visit : brainly.com/question/10353944
#SPJ4
I expect that they will <em>add</em>, and their effect at every location will be the <em>sum</em> of their individual effects at that location.
For example:
If they're acting at the same point and in opposite directions, the effect will be the same as a single force at that point, with strength equal to their difference, and in the direction corresponding to whichever one is stronger.
Answer and explanation:
The right answer is b) "The excess charge has distributed itself evenly over the outside surface of the sphere".
The hollow metal sphere is a conductor. This means that charges can move freely over its surface. On the other side, a metal body act as an equipotential body. Once some charge is set and there is no voltage differential imprinted over the body, to keep being an equipotential body the charges must distribute evenly on the external surface. Must not exist charge in the volume, or would exist an electrical field and therefore a voltage differential. Also, the charge distribution in the internal surface must be null. If you apply gauss theorem with a gaussian sphere with a radius between the internal and external surface, knowing that field E is null, the enclosed charge must be null.
If you count the number of seconds between the flash of lightning and the sound of thunder, and then divide by 5, you'll get the distance in miles to the lightning: 5 seconds = 1 mile, 15 seconds = 3 miles, 0 seconds = very close. Keep in mind that you should be in a safe place while counting.