Answer:
A homopolar motor is a direct current electric motor with two magnetic poles, the conductors of which always cut unidirectional lines of magnetic flux by rotating a conductor around a fixed axis so that the conductor is at right angles to a static magnetic field.
Explanation:
Answer:
a)= 98kJ
b)=108kJ
c) = 10kJ
Explanation:
a. The work that is done by gravity on the elevator is:
Work = force * distance
= mass * gravity * distance
= 1000 * 9.81 * 10
= 98,000 J
= 98kJ
b)The net force equation in the cable
T - mg = ma
T = m(g+a)
T = 1000(9.8 + 10)
T = 10800N
The work done by the cable is
W = T × d
= 10800N × 10
= 108000
=108kJ
c) PE at 10m = 1000 * 9.81 * 10 = 98,100 J
Work done by cable = PE +KE
108,100 J = KE + 98,100 J
KE = 10,000 J
= 10kJ
=
Answer:
6926.4J
Explanation:
Given parameters:
Mass of iron = 200g
Initial temperature = 100°C
Final temperature = 22°C
Unknown:
Amount of heat transferred to the water = ?
Solution:
The quantity of heat transferred to the water is a function of mass and temperature of the iron;
H = m c Ф
m is the mass of the iron
Ф is the change in temperature
C is the specific heat capacity of iron = 0.444 J/g°C
Now;
insert the parameters and solve;
H = 200 x 0.444 x (100-22)
H = 6926.4J
You will have to "put force against the object to slow it down." Momentum is the force that is keeping a object moving in a certain direction so if you would want to slow down the object you will have to put another force against the object to slow it down or stop it. For example: a person kicks a ball, the ball moving is the momentum. So, if you would want to stop the ball you would have t put something in its path to slow it down which is the decreasing of it's momentum. Therefore you would put a bump in the wall and when the ball hits the bump it slows down.
Hope this helps!