For this problem, we use the formula for sensible heat which is written below:
Q= mCpΔT
where Q is the energy
Cp is the specific heat capacity
ΔT is the temperature difference
Q = (55.5 g)(<span>0.214 cal/g</span>·°C)(48.6°C- 23°C)
<em>Q = 304.05 cal</em>
The reaction is:
<span>4Li(s) + O2 (g) = 2Li+ + 2O-2(s).
The oxidizing agent is the one that is being reduced which is oxygen where the charge changed from neutral to -2 while the reducing agent is the on being oxidized which is lithium where the charge change from neutral to +1.</span>
Elements in the same group have similar properties
Answer:
0.1832 moles of ethyl acetate (
)
Explanation:
1. Find the balanced chemical equation:
In the production of ethyl acetate, the acetic acid
reacts with ethanol to produce ethyl acetate
and water, that is:

2. Find the theoretical maximum moles of ethyl acetate
:
As the problem says that the acetic acid
is the limiting reagent, use stoichiometry to find the moles of ethyl acetate produced:

Hey there!
A half-life means after a certain amount of time, half of that substance will be gone/changed after that time.
How many half-lives are in 16 days?
Multiply 16 by 24 (to get the total hours) and divide that by 2.5.
That is 153.6 half-lives.
35(0.5)^(153.6) represents the equation for this.
Simplify this and get 8.88 x 10^(-45).
There will be 2.02 x 10^(-45)g of germanium-66 sample remaining after 16 days.
Hope this helps!