Answer:
The answer to your question is below
Explanation:
a) HCl 0.01 M
pH = -log [0.01]
pH = - (-2)
pH = 2
b) HCl = 0.001 M
pH = -log[0.001]
pH = -(-3)
pH = 3
c) HCl = 0.00001 M
pH = -log[0.00001]
pH = - (-5)
pH = 5
d) Distilled water
pH = 7.0
e) NaOH = 0.00001 M
pOH = -log [0.00001]
pOH = -(-5)
pH = 14 - 5
pH = 9
f) NaOH = 0.001 M
pOH =- log [0.001]
pOH = 3
pH = 14 - 3
pH = 11
g) NaOH = 0.1 M
pOH = -log[0.1]
pOH = 1
pH = 14 - 1
pH = 13
Answer:
b. independent/manipulated variable
Explanation:
Independent/manipulated variable - refers to the variable that is changed by the scientist or an experimenter. Only one variable that is independent is required to ensure a fair test in an excellent experiment. As the independent variable is being changed by an experimenter or scientist, data is being recorded simultaneously as they are collected.
In science it is best to continue research, and rinse and repeat. This allows for a stronger hypothesis if you're results are the same every time, or change your hypothesis if you stumble upon new results. <span />
Answer: Option (c) is the correct answer.
Explanation:
Plants used to prepare food in the presence of sunlight. Therefore, plants uses solar energy to make food.
Due to solar energy various chemical reactions take place in the food.
Thus, we can conclude that chemical energy is stored in our food and this chemical energy start out as light energy from the sun.
<h3><u>Answer;</u></h3>
Directly proportional
<h3><u>Explanation;</u></h3>
- <em><u>Concentration is one of the factors that determine the rate of a reaction. Reaction rates increases with increase in the concentration of the reactants, which means they are directly proportional.</u></em>
- An increase in the concentration of reactants produces more collisions and thus increasing the rate at which the reaction is taking place. Therefore, <u>Increasing the concentration of a reactant increases the frequency of collisions between reactants and will cause an increase in the rate of reaction.</u>