Answer:
The values of p in the equation are 0 and 6
Step-by-step explanation:
First, you have to make the denominators the same. to do that, first factor 2p^2-7p-4 = \left(2p+1\right)\left(p-4\right)2p
2
−7p−4=(2p+1)(p−4)
So then the equation looks like:
\frac{p}{2p+1}-\frac{2p^2+5}{(2p+1)(p-4)}=-\frac{5}{p-4}
2p+1
p
−
(2p+1)(p−4)
2p
2
+5
=−
p−4
5
To make the denominators equal, multiply 2p+1 with p-4 and p-4 with 2p+1:
\frac{p^2-4p}{(2p+1)(p-4)}-\frac{2p^2+5}{(2p+1)(p-4)}=-\frac{10p+5}{(p-4)(2p+1)}
(2p+1)(p−4)
p
2
−4p
−
(2p+1)(p−4)
2p
2
+5
=−
(p−4)(2p+1)
10p+5
Since, this has an equal sign we 'get rid of' or 'forget' the denominator and only solve the numerator.
(p^2-4p)-(2p^2+5)=-(10p+5)(p
2
−4p)−(2p
2
+5)=−(10p+5)
Now, solve like a normal equation. Solve (p^2-4p)-(2p^2+5)(p
2
−4p)−(2p
2
+5) first:
(p^2-4p)-(2p^2+5)=-p^2-4p-5(p
2
−4p)−(2p
2
+5)=−p
2
−4p−5
-p^2-4p-5=-10p+5−p
2
−4p−5=−10p+5
Combine like terms:
-p^2-4p+0=-10p−p
2
−4p+0=−10p
-p^2+6p=0−p
2
+6p=0
Factor:
p=0, p=6p
Step-by-step explanation:
4+6+5=15
15-1=14
2/14
1/7
Answer:
Option B - False
Step-by-step explanation:
Critical value is a point beyond which we normally reject the null hypothesis. Whereas, P-value is defined as the probability to the right of respective statistic which could either be Z, T or chi. Now, the benefit of using p-value is that it calculates a probability estimate which we will be able to test at any level of significance by comparing the probability directly with the significance level.
For example, let's assume that the Z-value for a particular experiment is 1.67, which will be greater than the critical value at 5% which will be 1.64. Thus, if we want to check for a different significance level of 1%, we will need to calculate a new critical value.
Whereas, if we calculate the p-value for say 1.67, it will give a value of about 0.047. This p-value can be used to reject the hypothesis at 5% significance level since 0.047 < 0.05. But with a significance level of 1%, the hypothesis can be accepted since 0.047 > 0.01.
Thus, it's clear critical values are different from P-values and they can't be used interchangeably.
3/7. if you make them equivalent fractions it would be 30/70 or 14/70. 30/70 is bigger.
so we have a 33, namely two real solutions for that quadratic.
usually that number goes into a √, if you have covered the quadratic formula, you'd see it there, namely that'd be equivalent to √(33), now 33 is a prime number, and √(33) is yields an irrational value, specifically because a prime number is indivisible other than by itself or 1.
so 33 can only afford us two real irrational roots.