Answer:
9.82 ×
Hz
Explanation:
De Broglie equation is used to determine the wavelength of a particle (e.g electron) in motion. It is given as:
λ = 
where: λ is the required wavelength of the moving electron, h is the Planck's constant, m is the mass of the particle, v is its speed.
Given that: h = 6.63 ×
Js, m = 2.50 kg, v = 2.70 m/s, the wavelength, λ, can be determined as follows;
λ = 
= 
= 
= 9.8222 × 
The wavelength of the object is 9.82 ×
Hz.
Use the Pythagoras for the magnitude and the tan^-1 x = -1 for the angle
displacement = 4^2 + 4^2 = 32 = 4 sqrt(2) = 5.65 km
angle is 135 degrees.
This suggest the the atom has a very small positively charged nucleus in the mass of the atom is concentrated.
And the electrons revolves around the nucleus in their orbits.
Answer:
"the force of attraction between two objects"
Explanation:
According to Newton's Universal Law of Gravitation, gravity is a force of attraction acting between objects that possess mass. The fact that we only observe gravitational attraction (as opposed to repulsion) makes gravity unique among the known forces.
Answer:
1387908 lbm/h
Explanation:
Air flowing into jet engine = 70 lbm/s
ρ = Exhaust gas density = 0.1 lbm/ft³
r = Radius of exit with a circular cross section = 1 ft
v = Exhaust gas velocity = 1450 ft/s
Exhaust gas mass (flow rate)= Air flowing into jet engine + Fuel
Q = (70+x) lbm/s
Area of exit with a circular cross section = π×r² = π×1²= π m²
Now from energy balance
Q = ρ×A×v
⇒70+x = 0.1×π×1450
⇒70+x = 455.53
⇒ x = 455.53-70
⇒ x = 385.53 lbm/s
∴ Mass of fuel which is supplied to the engine each minute is 1387908 lbm/h