1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
krek1111 [17]
3 years ago
8

Projectile Motion

Physics
1 answer:
lakkis [162]3 years ago
7 0

Answer:

a)  F = (m / t₀) 95.33

 b)  θ = 70.5º

Explanation:

This is a projectile launch, as they indicate the horizontal distance this is the range of the body,  let's use the expression for the range of the projectiles

            R = v₀² sin 2θ / g

            v₀² sin 2θ = R g

Where the range is  550.46 m

They also indicate the time that the air must remain, so this time is twice the time until reaching the maximum height.

        v_{y} = v_{oy} - g t

At the maximum height v_{y} = 0 and the initial speed on the axis and we can find it with trigonometry

         sin θ = v_{oy} / v_{o}

         v_{oy} = v_{o} sin θ

         v_{o} sin θ = g t

Let's write the two equations

             v_{oy}² sin 2θ = g R

             v_{o} sin θ = g t

 We solve our accusation system

              (G t / sin θ) 2 sin 2θ = g R

              g t² sin 2θ = R sin  θ

               

Let's use the trigonometric relationship

         sin 2θ = 2 sin θ cos θ

We substitute

           g t² (2 sin θ cos θ) = R sin θ

             

          Cos tea = R / 2 g t²

          θ = cos⁻¹ (R / 2g t²)

Let's calculate

          θ = cos⁻¹ (550.46 / (2  9.8  9.17² ))

          θ = 70.5º

a) Force can be  Newton's second law

On the x axis the speed is constant so the force on the axis is zero

In the y axis the acceleration we have is the acceleration of gravity, so the force that acts throughout the journey is the weight of the body.

To place the body in the air from the rest we can use the equation of the impulse

          F t = Δp = m v - m v₀

As kick from rest   v₀ = 0

           

Let's find the speed of the body

         v_{oy} = g t

          v_{o} = g t / sin 70.5

         v_{o} = 9.8 9.17 / sin 70.5

         v_{o} = 95.33 m / s

To encocorate the force we must suppose a firing time, which in general is very short, suppose that this time is to

           F = m v_{o} / t₀

           F = (m / t₀) 95.33

This is the outside that should be applied, as an example suppose a body of mass 1 kg⁵ ( m = 1 kg) and a trip time to = 0.1 s

           F = (1 / 0.1) 95.33

          F = 953.3 N

You might be interested in
why is a person who lives in the city able to sleep through the sounds of traffic but awaken to the soft sound of bird singing
mash [69]

They grew up  to that sound. They love the sound of that same traffic sound.

5 0
3 years ago
Read 2 more answers
THIS IS SCIENCE .What is most likely to happen during weathering? Moving of sediment Breaking down of rocks Laying down of sedim
MaRussiya [10]

The answer is B. Breaking down of rocks.

7 0
3 years ago
) determine the density of a 32.5 g metal sample that displaces 8.39 ml of water.
sweet-ann [11.9K]
Density is the ratio of a substance's mass to its volume. On the other hand, according to Archimedes' principle, the volume of water displaced is equal to the volume of the object placed on the water. Thus, the density of the metal is equal to 8.39 mL. So, the density would be

Density = 32.5 g/8.39 mL = 3.87 g/mL
3 0
3 years ago
Read 2 more answers
The multiple reflection of a single sound wave is a/an
ANTONII [103]

A single reflection, like shouting at the side of a mountain and hearing
your voice come back to you, is an 'echo'.

Multiple reflection, like clapping your hands once inside a large room,
is 'reverberation'.

8 0
3 years ago
A ball with a mass of 170 g which contains 3.80×108 excess electrons is dropped into a vertical shaft with a height of 145 m . A
yaroslaw [1]

Answer:

A. F=6.65*10^{-10}N

B. south - north

Explanation:

A) We use the Lorentz force

F = qv X B

|F| = qvB

to calculate the magnitude of the force we need the speed of the of the ball.

v_{f}^{2}=v_{0}^{2}+2gy\\v_{f}=\sqrt{0+2(9.8\frac{m}{s^{2}})(145m)}=53.31\frac{m}{s}

and by replacing in the formula for the magnitude of the force we have (taking into account the excess of electrons)

F=(3.8*10^{8})(1.602*10^{-19}C)(53.31\frac{m}{s})(0.205T)=6.65*10^{-10}N

B)

b.  south - north (by the rigth hand rule)

I hope this is usefull for you

regards

8 0
3 years ago
Other questions:
  • A race car has a mass of 710 kg. it starts from rest and travels 40.0 m in 3.0 s. the car is uniformly accelerated during the en
    8·2 answers
  • What is the range of these data? 6,9,2,12,3,5,9​
    9·2 answers
  • Visible light occupies the majority of the electromagnetic spectrum? Ture or false
    8·2 answers
  • The period of a simple pendulum, defined as the time necessary for one complete oscillation, is measured in time units and is gi
    14·1 answer
  • How much heat is absorbed by a 35g iron skillet when its temperature rises from 14oC to 79oC? Joules
    14·1 answer
  • Yellow light has a frequency of 5.21 x 10^15 Hz. What is the wavelength of yellow light?
    9·1 answer
  • A bullet of mass 0.5 kg is moving horizontally with a speed of 50 m/s when it hits a block
    10·1 answer
  • Light travels about 180 million kilometers in 10 minutes. How far does it travel in 1 minute? How far does it travel in 1 second
    13·1 answer
  • What is the velocity of an object that travels a distance of 48m in 12s?
    6·2 answers
  • A domestic water heater holds 189 L of water at 608C, 1 atm. Determine the exergy of the hot water, in kJ. To what elevation, in
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!