An object that has kinetic energy must be <em>moving</em>.
The formula for an object's kinetic energy is
KE = (1/2) · (the object's mass) · <u><em>(the object's speed)²</em></u>
As you can see from the formula, if the object has no speed, then its kinetic energy is zero. That's why kinetic energy is usually called the "energy of motion", and if an object HAS kinetic energy, then that tells you right away that it must be moving.
Answer:
The kinetic energy of a body is the energy that it possessed due to its motion. Kinetic energy can be defined as the work needed to accelerate an object of a given mass from rest to its stated velocity. Kinetic energy depends upon the velocity and the mass of the body.
The power of man performing 500 J of work in 8 seconds is 62.5 J/s.
Power can be defined as the pace at which work is completed in a given amount of time.
Horsepower is sometimes used to describe the power of motor vehicles and other machinery.
The pace at which work is done on an item is defined as its power. Power is a temporal quantity.
Which is connected to how quickly a project is completed.
The power formula is shown below.
Power = Energy / Time
Power = E / T
Because the standard metric unit for labour is the Joule and the standard metric unit for time is the second, the standard metric unit for power is a Joule / second, defined as a Watt and abbreviated W.
Here we have given Energy as 500 J and Time as 8 second.
Power = Energy / Time
Power = 500 / 8 Joule / sec
Power = 250 / 4 Joule / sec
Power = 125 / 2 Joule / sec
Power = 62.5 Joule / sec or 62.5 watt
Power came out to be 62.5 J/s when the man performed 500 Joule of work in 8 seconds.
So we can conclude that the power in the Energy transmitted per unit of time, and can be find out by dividing Energy by time. In our case the Power came out to be 62.5 Joule / Second.
Learn more about Power here:
brainly.com/question/1634438
#SPJ10
The answer is C. It would look similar to the graph for KNO3