Answer:

Explanation:
We are given that
Diameter=d=
Thickness=
Radius=
Using 
Dielectric constant=8
Resistance =
Internal specific resistance=r=100 ohm cm=
Using 1 m=100 cm
Internal resistance per unit length=
Using 
Internal resistance per unit length=
Explanation:
initial velocity U = 20m/s
Final velocity V = 35m/s
time = 15.0 secs
change in velocity = 35 - 15
= 20m/s
acceleration a = change in velocity/time V/t
a = (35-20)/15
a= 15/15
Hence, your acceleration is 1m/s^2
If a ship will be sailing through warm and cold water, people think about making it less dense than the warmest water as they load the ship with cargo. I think you forgot to give the options along with the question. I hope that this is the answer that has actually come to your desired help.
Complete Question
The complete question is shown on the first uploaded image
Answer:
The velocity is
in positive x -direction
The speed is 
Explanation:
From the question we are told that
The distance from the house to truck is D = 20 m
The distance traveled back to retrieve wind-blown hat is d = 15
The distance from the wind-blown hat position too the truck is k = 20 m
The total time taken is t = 75 s
Generally when calculating the displacement the Justin's backward movement to collect his wind - blown hat is taken as negative
Generally Justin's displacement is mathematically represented as

=> 
Generally the average velocity is mathematically represented as

=> 
=>
Generally the distance covered by Justin is mathematically represented as

=> 
=> 
Generally Justin's average speed over a 75 s period is mathematically represented as

=> 
=> 
Answer:
w = 2w₀ the angular velocity of man doubles
Explanation:
In this exercise, releasing the weights reduces the moment of inertia
I= I₀ / 2
Therefore, since the platform system plus man is isolated, the kinetic moment must be conserved
L₀ = L
I₀ w₀ = I w
I₀ w₀ = I₀ / 2 w
w = 2w₀
therefore the angular velocity of man doubles