Explanation:
As we know, resistance is the ratio of voltage used and current flowing through the circuit. So,
<h3>R = V/I</h3>
By error calculation
<h3>∆R/R = [(∆V/V)100] + [(∆I/I)100]</h3>
V = 100 ± 6% V
I = 10 ± 0.2% A
∆R/R= (5/100)×100 + (0.2/10)×100
∆R/R=5+2=7%
<h2>So, percentage error in resistance (R) = ± 7%.</h2>
Answer:
9.89 m/s.
Explanation:
Given that,
The radius of the circular arc, r = 25 m
The acceleration of the vehicle is 0.40 times the free-fall acceleration i.e.,a = 0.4(9.8) = 3.92 m/s²
Let v is the maximum speed at which you should drive through this turn. It can be solved as follows :

So, the maximum speed of the car should be 9.89 m/s.
Given :
Reem took a wire of length 10 cm. Her friend Nain took a wire of 5 cm of the same material and thickness both of them connected with wires as shown in the circuit given in figure. The current flowing in both the circuits is the same.
To Find :
Will the heat produced in both the cases be equal.
Solution :
Heat released is given by :
H = i²Rt
Here, R is resistance and is given by :

So,
Now, in the question every thing is constant except for the length of the wire and from above equation heat is directly proportional to the length of the wire.
So, heat produced by Reem's wire is more than Nain one.
Hence, this is the required solution.
Explanation:
Given:
v₀ₓ = 15 m/s cos 20° = 14.10 m/s
aₓ = 0 m/s²
v₀ᵧ = 15 m/s sin 20° = 5.13 m/s
aᵧ = -9.8 m/s²
t = 1.5 s
Find: Δx and Δy
Δx = v₀ₓ t + ½ aₓ t²
Δx = (14.10 m/s) (1.5 s) + ½ (0 m/s²) (1.5 s)²
Δx = 21.1 m
Δy = v₀ᵧ t + ½ aᵧ t²
Δy = (5.13 m/s) (1.5 s) + ½ (-9.8 m/s²) (1.5 s)²
Δy = -3.33 m
The general accepted value of acceleration due to gravity, g, is 9.81 m/s^2.
That is an approximation because being the acceleration of gravity due to the attraction of the earth its magnitude will depend on the distance from the point to the center of the planet Earth.
The value of g is determined by using the Newton's Universal Law of gravity:
F = G * m of Earth * m of body / (distance^2)
Wehre {G* m of Earth / (distance^2) } = g
G is a universal constant = 6.67 * 10 ^ -11 N*m^2 / kg^2
m of Earth = 5.98 * 10 ^ 24 kg
distance = radius of Earth + height of the body
Given the the Earth is not a perfect sphere the radius varies. Also the height of the body varies.
If you take a mean radius of Earth of 6.37*10^6 m
you get
g = 6.67*10^-11 N*m^2/kg^2 * 5.98*10^24kg / (6.37*10^6 m)^2 = 9.83 m/s^2
Again, if you want a more precise value of g, you need to find the exact place where you are and then use the right r.